Krylov complexity in a natural basis for the Schrödinger algebra
- URL: http://arxiv.org/abs/2306.03133v4
- Date: Tue, 9 Apr 2024 15:46:37 GMT
- Title: Krylov complexity in a natural basis for the Schrödinger algebra
- Authors: Dimitrios Patramanis, Watse Sybesma,
- Abstract summary: We investigate operator growth in quantum systems with two-dimensional Schr"odinger group symmetry.
Cases such as the Schr"odinger algebra which is characterized by a semi-direct sum structure are complicated.
We compute Krylov complexity for this algebra in a natural orthonormal basis.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We investigate operator growth in quantum systems with two-dimensional Schr\"odinger group symmetry by studying the Krylov complexity. While feasible for semisimple Lie algebras, cases such as the Schr\"odinger algebra which is characterized by a semi-direct sum structure are complicated. We propose to compute Krylov complexity for this algebra in a natural orthonormal basis, which produces a pentadiagonal structure of the time evolution operator, contrasting the usual tridiagonal Lanczos algorithm outcome. The resulting complexity behaves as expected. We advocate that this approach can provide insights to other non-semisimple algebras.
Related papers
- Complexity and Operator Growth for Quantum Systems in Dynamic
Equilibrium [1.1868310494908512]
Krylov complexity is a measure of operator growth in quantum systems.
We show that Krylov complexity can distinguish between the $mathsfPT$-symmetric and $mathsfPT$ symmetry-broken phases.
Our results demonstrate the utility of Krylov complexity as a tool to probe the properties and transitions of $mathsfPT$-symmetric systems.
arXiv Detail & Related papers (2023-12-25T18:58:13Z) - Sample Complexity for Quadratic Bandits: Hessian Dependent Bounds and
Optimal Algorithms [64.10576998630981]
We show the first tight characterization of the optimal Hessian-dependent sample complexity.
A Hessian-independent algorithm universally achieves the optimal sample complexities for all Hessian instances.
The optimal sample complexities achieved by our algorithm remain valid for heavy-tailed noise distributions.
arXiv Detail & Related papers (2023-06-21T17:03:22Z) - Extremal jumps of circuit complexity of unitary evolutions generated by random Hamiltonians [0.0]
We investigate circuit complexity of unitaries generated by time evolution of randomly chosen strongly interacting Hamiltonians in finite dimensional Hilbert spaces.
We prove that the complexity of $exp(-it H)$ exhibits a surprising behaviour -- with high probability it reaches the maximal allowed value on the same time scale as needed to escape the neighborhood of the identity consisting of unitaries with trivial (zero) complexity.
arXiv Detail & Related papers (2023-03-30T17:05:06Z) - Krylov complexity and orthogonal polynomials [30.445201832698192]
Krylov complexity measures operator growth with respect to a basis, which is adapted to the Heisenberg time evolution.
The construction of that basis relies on the Lanczos method of recursion.
arXiv Detail & Related papers (2022-05-25T14:40:54Z) - Bounds on quantum evolution complexity via lattice cryptography [0.0]
We address the difference between integrable and chaotic motion in quantum theory as manifested by the complexity of the corresponding evolution operators.
Complexity is understood here as the shortest geodesic distance between the time-dependent evolution operator and the origin within the group of unitaries.
arXiv Detail & Related papers (2022-02-28T16:20:10Z) - Learning Algebraic Recombination for Compositional Generalization [71.78771157219428]
We propose LeAR, an end-to-end neural model to learn algebraic recombination for compositional generalization.
Key insight is to model the semantic parsing task as a homomorphism between a latent syntactic algebra and a semantic algebra.
Experiments on two realistic and comprehensive compositional generalization demonstrate the effectiveness of our model.
arXiv Detail & Related papers (2021-07-14T07:23:46Z) - Detailed Account of Complexity for Implementation of Some Gate-Based
Quantum Algorithms [55.41644538483948]
In particular, some steps of the implementation, as state preparation and readout processes, can surpass the complexity aspects of the algorithm itself.
We present the complexity involved in the full implementation of quantum algorithms for solving linear systems of equations and linear system of differential equations.
arXiv Detail & Related papers (2021-06-23T16:33:33Z) - Quantum-Inspired Algorithms from Randomized Numerical Linear Algebra [53.46106569419296]
We create classical (non-quantum) dynamic data structures supporting queries for recommender systems and least-squares regression.
We argue that the previous quantum-inspired algorithms for these problems are doing leverage or ridge-leverage score sampling in disguise.
arXiv Detail & Related papers (2020-11-09T01:13:07Z) - Operator complexity: a journey to the edge of Krylov space [0.0]
Krylov complexity, or K-complexity', quantifies this growth with respect to a special basis.
We study the evolution of K-complexity in finite-entropy systems for time scales greater than the scrambling time.
arXiv Detail & Related papers (2020-09-03T18:10:20Z) - Relevant OTOC operators: footprints of the classical dynamics [68.8204255655161]
The OTOC-RE theorem relates the OTOCs summed over a complete base of operators to the second Renyi entropy.
We show that the sum over a small set of relevant operators, is enough in order to obtain a very good approximation for the entropy.
In turn, this provides with an alternative natural indicator of complexity, i.e. the scaling of the number of relevant operators with time.
arXiv Detail & Related papers (2020-07-31T19:23:26Z) - A refinement of Reznick's Positivstellensatz with applications to
quantum information theory [72.8349503901712]
In Hilbert's 17th problem Artin showed that any positive definite in several variables can be written as the quotient of two sums of squares.
Reznick showed that the denominator in Artin's result can always be chosen as an $N$-th power of the squared norm of the variables.
arXiv Detail & Related papers (2019-09-04T11:46:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.