Nonlinear Distributionally Robust Optimization
- URL: http://arxiv.org/abs/2306.03202v3
- Date: Tue, 05 Nov 2024 21:56:51 GMT
- Title: Nonlinear Distributionally Robust Optimization
- Authors: Mohammed Rayyan Sheriff, Peyman Mohajerin Esfahani,
- Abstract summary: This article focuses on a class of distributionally robust optimization (DRO) problems where the objective function is potentially nonlinear in the distribution.
We propose an alternative notion for the derivative and corresponding smoothness based on Gateaux (G)-derivative for generic risk measures.
We use the set-up of the FW algorithm to devise a methodology to compute a saddle point of the nonlinear DRO problem.
- Score: 5.0490573482829335
- License:
- Abstract: This article focuses on a class of distributionally robust optimization (DRO) problems where, unlike the growing body of the literature, the objective function is potentially nonlinear in the distribution. Existing methods to optimize nonlinear functions in probability space use the Frechet derivatives, which present theoretical and computational challenges. Motivated by this, we propose an alternative notion for the derivative and corresponding smoothness based on Gateaux (G)-derivative for generic risk measures. These concepts are explained via three running risk measure examples of variance, entropic risk, and risk on finite support sets. We then propose a G-derivative-based Frank-Wolfe (FW) algorithm for generic nonlinear optimization problems in probability spaces and establish its convergence under the proposed notion of smoothness in a completely norm-independent manner. We use the set-up of the FW algorithm to devise a methodology to compute a saddle point of the nonlinear DRO problem. Finally, we validate our theoretical results on two cases of the $entropic$ and $variance$ risk measures in the context of portfolio selection problems. In particular, we analyze their regularity conditions and "sufficient statistic", compute the respective FW-oracle in various settings, and confirm the theoretical outcomes through numerical validation.
Related papers
- A Unified Theory of Stochastic Proximal Point Methods without Smoothness [52.30944052987393]
Proximal point methods have attracted considerable interest owing to their numerical stability and robustness against imperfect tuning.
This paper presents a comprehensive analysis of a broad range of variations of the proximal point method (SPPM)
arXiv Detail & Related papers (2024-05-24T21:09:19Z) - Model-Based Epistemic Variance of Values for Risk-Aware Policy Optimization [59.758009422067]
We consider the problem of quantifying uncertainty over expected cumulative rewards in model-based reinforcement learning.
We propose a new uncertainty Bellman equation (UBE) whose solution converges to the true posterior variance over values.
We introduce a general-purpose policy optimization algorithm, Q-Uncertainty Soft Actor-Critic (QU-SAC) that can be applied for either risk-seeking or risk-averse policy optimization.
arXiv Detail & Related papers (2023-12-07T15:55:58Z) - Likelihood Ratio Confidence Sets for Sequential Decision Making [51.66638486226482]
We revisit the likelihood-based inference principle and propose to use likelihood ratios to construct valid confidence sequences.
Our method is especially suitable for problems with well-specified likelihoods.
We show how to provably choose the best sequence of estimators and shed light on connections to online convex optimization.
arXiv Detail & Related papers (2023-11-08T00:10:21Z) - Data-Driven Influence Functions for Optimization-Based Causal Inference [105.5385525290466]
We study a constructive algorithm that approximates Gateaux derivatives for statistical functionals by finite differencing.
We study the case where probability distributions are not known a priori but need to be estimated from data.
arXiv Detail & Related papers (2022-08-29T16:16:22Z) - Towards a Unified Framework for Uncertainty-aware Nonlinear Variable
Selection with Theoretical Guarantees [2.1506382989223782]
We develop a simple and unified framework for nonlinear variable selection that incorporates model uncertainty.
We show that the approach is generalizable even to non-differentiable models such as tree ensembles.
arXiv Detail & Related papers (2022-04-15T02:12:00Z) - Non-Linear Spectral Dimensionality Reduction Under Uncertainty [107.01839211235583]
We propose a new dimensionality reduction framework, called NGEU, which leverages uncertainty information and directly extends several traditional approaches.
We show that the proposed NGEU formulation exhibits a global closed-form solution, and we analyze, based on the Rademacher complexity, how the underlying uncertainties theoretically affect the generalization ability of the framework.
arXiv Detail & Related papers (2022-02-09T19:01:33Z) - Optimal variance-reduced stochastic approximation in Banach spaces [114.8734960258221]
We study the problem of estimating the fixed point of a contractive operator defined on a separable Banach space.
We establish non-asymptotic bounds for both the operator defect and the estimation error.
arXiv Detail & Related papers (2022-01-21T02:46:57Z) - Integrated Conditional Estimation-Optimization [6.037383467521294]
Many real-world optimization problems uncertain parameters with probability can be estimated using contextual feature information.
In contrast to the standard approach of estimating the distribution of uncertain parameters, we propose an integrated conditional estimation approach.
We show that our ICEO approach is theally consistent under moderate conditions.
arXiv Detail & Related papers (2021-10-24T04:49:35Z) - Statistical optimality and stability of tangent transform algorithms in
logit models [6.9827388859232045]
We provide conditions on the data generating process to derive non-asymptotic upper bounds to the risk incurred by the logistical optima.
In particular, we establish local variation of the algorithm without any assumptions on the data-generating process.
We explore a special case involving a semi-orthogonal design under which a global convergence is obtained.
arXiv Detail & Related papers (2020-10-25T05:15:13Z) - Mean-Variance Analysis in Bayesian Optimization under Uncertainty [23.39754660544729]
We consider active learning (AL) in an uncertain environment in which trade-off between multiple risk measures need to be considered.
We show the effectiveness of the proposed AL algorithms through theoretical analysis and numerical experiments.
arXiv Detail & Related papers (2020-09-17T09:21:46Z) - A Stochastic Subgradient Method for Distributionally Robust Non-Convex
Learning [2.007262412327553]
robustness is with respect to uncertainty in the underlying data distribution.
We show that our technique converges to satisfying perturbationity conditions.
We also illustrate the performance of our algorithm on real datasets.
arXiv Detail & Related papers (2020-06-08T18:52:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.