Learning Embeddings for Sequential Tasks Using Population of Agents
- URL: http://arxiv.org/abs/2306.03311v2
- Date: Wed, 8 May 2024 22:12:28 GMT
- Title: Learning Embeddings for Sequential Tasks Using Population of Agents
- Authors: Mridul Mahajan, Georgios Tzannetos, Goran Radanovic, Adish Singla,
- Abstract summary: We present an information-theoretic framework to learn fixed-dimensional embeddings for tasks in reinforcement learning.
We leverage the idea that two tasks are similar if observing an agent's performance on one task reduces our uncertainty about its performance on the other.
- Score: 27.61165606165948
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present an information-theoretic framework to learn fixed-dimensional embeddings for tasks in reinforcement learning. We leverage the idea that two tasks are similar if observing an agent's performance on one task reduces our uncertainty about its performance on the other. This intuition is captured by our information-theoretic criterion which uses a diverse agent population as an approximation for the space of agents to measure similarity between tasks in sequential decision-making settings. In addition to qualitative assessment, we empirically demonstrate the effectiveness of our techniques based on task embeddings by quantitative comparisons against strong baselines on two application scenarios: predicting an agent's performance on a new task by observing its performance on a small quiz of tasks, and selecting tasks with desired characteristics from a given set of options.
Related papers
- Exploring the Effectiveness and Consistency of Task Selection in Intermediate-Task Transfer Learning [21.652389166495407]
We show that the transfer performance exhibits severe variance across different source tasks and training seeds.
Compared to embedding-free methods and text embeddings, task embeddings constructed from fine-tuned weights can better estimate task transferability.
We introduce a novel method that measures pairwise token similarity using maximum inner product search, leading to the highest performance in task prediction.
arXiv Detail & Related papers (2024-07-23T07:31:43Z) - Unraveling the Mechanics of Learning-Based Demonstration Selection for In-Context Learning [43.356895599336504]
We analyze the working mechanisms of the learning-based demonstration selection methods.
We empirically identify two important factors related to similarity measurement.
We introduce two effective yet simplified exemplar selection methods catering to task-agnostic and task-specific demands.
arXiv Detail & Related papers (2024-06-14T03:34:02Z) - Instruction Matters: A Simple yet Effective Task Selection for Optimized Instruction Tuning of Specific Tasks [51.15473776489712]
We introduce a simple yet effective task selection method that leverages instruction information alone to identify relevant tasks.
Our method is significantly more efficient than traditional approaches, which require complex measurements of pairwise transferability between tasks or the creation of data samples for the target task.
Experimental results demonstrate that training on a small set of tasks, chosen solely on the instructions, results in substantial improvements in performance on benchmarks such as P3, Big-Bench, NIV2, and Big-Bench Hard.
arXiv Detail & Related papers (2024-04-25T08:49:47Z) - Sharing Knowledge in Multi-Task Deep Reinforcement Learning [57.38874587065694]
We study the benefit of sharing representations among tasks to enable the effective use of deep neural networks in Multi-Task Reinforcement Learning.
We prove this by providing theoretical guarantees that highlight the conditions for which is convenient to share representations among tasks.
arXiv Detail & Related papers (2024-01-17T19:31:21Z) - Multi-Task Consistency for Active Learning [18.794331424921946]
Inconsistency-based active learning has proven to be effective in selecting informative samples for annotation.
We propose a novel multi-task active learning strategy for two coupled vision tasks: object detection and semantic segmentation.
Our approach achieves 95% of the fully-trained performance using only 67% of the available data.
arXiv Detail & Related papers (2023-06-21T17:34:31Z) - Divergence-Based Domain Transferability for Zero-Shot Classification [78.55044112903148]
Transferring learned patterns from pretrained neural language models has been shown to significantly improve effectiveness across a variety of language-based tasks.
Further tuning on intermediate tasks has been demonstrated to provide additional performance benefits, provided the intermediate task is sufficiently related to the target task.
However, how to identify related tasks is an open problem, and brute-force searching effective task combinations is prohibitively expensive.
arXiv Detail & Related papers (2023-02-11T16:04:38Z) - Where's the Learning in Representation Learning for Compositional
Semantics and the Case of Thematic Fit [0.0]
We observe that for certain NLP tasks, such as semantic role prediction or thematic fit estimation, random embeddings perform as well as pretrained embeddings.
We find nuanced answers, depending on the task and its relation to the training objective.
arXiv Detail & Related papers (2022-08-09T12:37:46Z) - Non-Stationary Representation Learning in Sequential Linear Bandits [22.16801879707937]
We study representation learning for multi-task decision-making in non-stationary environments.
We propose an online algorithm that facilitates efficient decision-making by learning and transferring non-stationary representations in an adaptive fashion.
arXiv Detail & Related papers (2022-01-13T06:13:03Z) - Concurrent Discrimination and Alignment for Self-Supervised Feature
Learning [52.213140525321165]
Existing self-supervised learning methods learn by means of pretext tasks which are either (1) discriminating that explicitly specify which features should be separated or (2) aligning that precisely indicate which features should be closed together.
In this work, we combine the positive aspects of the discriminating and aligning methods, and design a hybrid method that addresses the above issue.
Our method explicitly specifies the repulsion and attraction mechanism respectively by discriminative predictive task and concurrently maximizing mutual information between paired views.
Our experiments on nine established benchmarks show that the proposed model consistently outperforms the existing state-of-the-art results of self-supervised and transfer
arXiv Detail & Related papers (2021-08-19T09:07:41Z) - Exploring Relational Context for Multi-Task Dense Prediction [76.86090370115]
We consider a multi-task environment for dense prediction tasks, represented by a common backbone and independent task-specific heads.
We explore various attention-based contexts, such as global and local, in the multi-task setting.
We propose an Adaptive Task-Relational Context module, which samples the pool of all available contexts for each task pair.
arXiv Detail & Related papers (2021-04-28T16:45:56Z) - Randomized Entity-wise Factorization for Multi-Agent Reinforcement
Learning [59.62721526353915]
Multi-agent settings in the real world often involve tasks with varying types and quantities of agents and non-agent entities.
Our method aims to leverage these commonalities by asking the question: What is the expected utility of each agent when only considering a randomly selected sub-group of its observed entities?''
arXiv Detail & Related papers (2020-06-07T18:28:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.