Randomized Schur Complement Views for Graph Contrastive Learning
- URL: http://arxiv.org/abs/2306.04004v1
- Date: Tue, 6 Jun 2023 20:35:20 GMT
- Title: Randomized Schur Complement Views for Graph Contrastive Learning
- Authors: Vignesh Kothapalli
- Abstract summary: We introduce a randomized topological augmentor based on Schur complements for Graph Contrastive Learning (GCL)
Given a graph laplacian matrix, the technique generates unbiased approximations of its Schur complements and treats the corresponding graphs as augmented views.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce a randomized topological augmentor based on Schur complements
for Graph Contrastive Learning (GCL). Given a graph laplacian matrix, the
technique generates unbiased approximations of its Schur complements and treats
the corresponding graphs as augmented views. We discuss the benefits of our
approach, provide theoretical justifications and present connections with graph
diffusion. Unlike previous efforts, we study the empirical effectiveness of the
augmentor in a controlled fashion by varying the design choices for subsequent
GCL phases, such as encoding and contrasting. Extensive experiments on node and
graph classification benchmarks demonstrate that our technique consistently
outperforms pre-defined and adaptive augmentation approaches to achieve
state-of-the-art results.
Related papers
- Synergistic Graph Fusion via Encoder Embedding [16.20934021488478]
We introduce a method called graph fusion embedding, designed for multi-graph embedding with shared sets.
Under the framework of supervised learning, our method exhibits a remarkable and highly desirable synergistic effect.
Our comprehensive simulations and real data experiments provide compelling evidence supporting the effectiveness of our proposed method.
arXiv Detail & Related papers (2023-03-31T13:34:35Z) - Spectral Augmentations for Graph Contrastive Learning [50.149996923976836]
Contrastive learning has emerged as a premier method for learning representations with or without supervision.
Recent studies have shown its utility in graph representation learning for pre-training.
We propose a set of well-motivated graph transformation operations to provide a bank of candidates when constructing augmentations for a graph contrastive objective.
arXiv Detail & Related papers (2023-02-06T16:26:29Z) - Graph Contrastive Learning with Implicit Augmentations [36.57536688367965]
Implicit Graph Contrastive Learning (iGCL) uses augmentations in latent space learned from a Variational Graph Auto-Encoder by reconstructing graph topological structure.
Experimental results on both graph-level and node-level tasks show that the proposed method achieves state-of-the-art performance.
arXiv Detail & Related papers (2022-11-07T17:34:07Z) - Graph Condensation via Receptive Field Distribution Matching [61.71711656856704]
This paper focuses on creating a small graph to represent the original graph, so that GNNs trained on the size-reduced graph can make accurate predictions.
We view the original graph as a distribution of receptive fields and aim to synthesize a small graph whose receptive fields share a similar distribution.
arXiv Detail & Related papers (2022-06-28T02:10:05Z) - Data-heterogeneity-aware Mixing for Decentralized Learning [63.83913592085953]
We characterize the dependence of convergence on the relationship between the mixing weights of the graph and the data heterogeneity across nodes.
We propose a metric that quantifies the ability of a graph to mix the current gradients.
Motivated by our analysis, we propose an approach that periodically and efficiently optimize the metric.
arXiv Detail & Related papers (2022-04-13T15:54:35Z) - GraphCoCo: Graph Complementary Contrastive Learning [65.89743197355722]
Graph Contrastive Learning (GCL) has shown promising performance in graph representation learning (GRL) without the supervision of manual annotations.
This paper proposes an effective graph complementary contrastive learning approach named GraphCoCo to tackle the above issue.
arXiv Detail & Related papers (2022-03-24T02:58:36Z) - Bayesian Graph Contrastive Learning [55.36652660268726]
We propose a novel perspective of graph contrastive learning methods showing random augmentations leads to encoders.
Our proposed method represents each node by a distribution in the latent space in contrast to existing techniques which embed each node to a deterministic vector.
We show a considerable improvement in performance compared to existing state-of-the-art methods on several benchmark datasets.
arXiv Detail & Related papers (2021-12-15T01:45:32Z) - Diversified Multiscale Graph Learning with Graph Self-Correction [55.43696999424127]
We propose a diversified multiscale graph learning model equipped with two core ingredients.
A graph self-correction (GSC) mechanism to generate informative embedded graphs, and a diversity boosting regularizer (DBR) to achieve a comprehensive characterization of the input graph.
Experiments on popular graph classification benchmarks show that the proposed GSC mechanism leads to significant improvements over state-of-the-art graph pooling methods.
arXiv Detail & Related papers (2021-03-17T16:22:24Z) - Graph Contrastive Learning with Adaptive Augmentation [23.37786673825192]
We propose a novel graph contrastive representation learning method with adaptive augmentation.
Specifically, we design augmentation schemes based on node centrality measures to highlight important connective structures.
Our proposed method consistently outperforms existing state-of-the-art baselines and even surpasses some supervised counterparts.
arXiv Detail & Related papers (2020-10-27T15:12:21Z) - The multilayer random dot product graph [6.722870980553432]
We present a comprehensive extension of the latent position network model known as the random dot product graph.
We propose a method for jointly embedding submatrices into a suitable latent space.
Empirical improvements in link prediction over single graph embeddings are exhibited in a cyber-security example.
arXiv Detail & Related papers (2020-07-20T20:31:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.