Exposing flaws of generative model evaluation metrics and their unfair
treatment of diffusion models
- URL: http://arxiv.org/abs/2306.04675v2
- Date: Mon, 30 Oct 2023 18:00:00 GMT
- Title: Exposing flaws of generative model evaluation metrics and their unfair
treatment of diffusion models
- Authors: George Stein, Jesse C. Cresswell, Rasa Hosseinzadeh, Yi Sui, Brendan
Leigh Ross, Valentin Villecroze, Zhaoyan Liu, Anthony L. Caterini, J. Eric T.
Taylor, Gabriel Loaiza-Ganem
- Abstract summary: We compare 17 modern metrics for evaluating the overall performance, fidelity, diversity, rarity, and memorization of generative models.
We find that the state-of-the-art perceptual realism of diffusion models as judged by humans is not reflected in commonly reported metrics such as FID.
Next, we investigate data memorization, and find that generative models do memorize training examples on simple, smaller datasets like CIFAR10, but not necessarily on more complex datasets like ImageNet.
- Score: 14.330863905963442
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We systematically study a wide variety of generative models spanning
semantically-diverse image datasets to understand and improve the feature
extractors and metrics used to evaluate them. Using best practices in
psychophysics, we measure human perception of image realism for generated
samples by conducting the largest experiment evaluating generative models to
date, and find that no existing metric strongly correlates with human
evaluations. Comparing to 17 modern metrics for evaluating the overall
performance, fidelity, diversity, rarity, and memorization of generative
models, we find that the state-of-the-art perceptual realism of diffusion
models as judged by humans is not reflected in commonly reported metrics such
as FID. This discrepancy is not explained by diversity in generated samples,
though one cause is over-reliance on Inception-V3. We address these flaws
through a study of alternative self-supervised feature extractors, find that
the semantic information encoded by individual networks strongly depends on
their training procedure, and show that DINOv2-ViT-L/14 allows for much richer
evaluation of generative models. Next, we investigate data memorization, and
find that generative models do memorize training examples on simple, smaller
datasets like CIFAR10, but not necessarily on more complex datasets like
ImageNet. However, our experiments show that current metrics do not properly
detect memorization: none in the literature is able to separate memorization
from other phenomena such as underfitting or mode shrinkage. To facilitate
further development of generative models and their evaluation we release all
generated image datasets, human evaluation data, and a modular library to
compute 17 common metrics for 9 different encoders at
https://github.com/layer6ai-labs/dgm-eval.
Related papers
- Self-Consuming Generative Models with Curated Data Provably Optimize Human Preferences [20.629333587044012]
We study the impact of data curation on iterated retraining of generative models.
We prove that, if the data is curated according to a reward model, the expected reward of the iterative retraining procedure is maximized.
arXiv Detail & Related papers (2024-06-12T21:28:28Z) - Towards Theoretical Understandings of Self-Consuming Generative Models [56.84592466204185]
This paper tackles the emerging challenge of training generative models within a self-consuming loop.
We construct a theoretical framework to rigorously evaluate how this training procedure impacts the data distributions learned by future models.
We present results for kernel density estimation, delivering nuanced insights such as the impact of mixed data training on error propagation.
arXiv Detail & Related papers (2024-02-19T02:08:09Z) - Learning Defect Prediction from Unrealistic Data [57.53586547895278]
Pretrained models of code have become popular choices for code understanding and generation tasks.
Such models tend to be large and require commensurate volumes of training data.
It has become popular to train models with far larger but less realistic datasets, such as functions with artificially injected bugs.
Models trained on such data tend to only perform well on similar data, while underperforming on real world programs.
arXiv Detail & Related papers (2023-11-02T01:51:43Z) - Learning to Jump: Thinning and Thickening Latent Counts for Generative
Modeling [69.60713300418467]
Learning to jump is a general recipe for generative modeling of various types of data.
We demonstrate when learning to jump is expected to perform comparably to learning to denoise, and when it is expected to perform better.
arXiv Detail & Related papers (2023-05-28T05:38:28Z) - Feature Likelihood Divergence: Evaluating the Generalization of
Generative Models Using Samples [25.657798631897908]
Feature Likelihood Divergence provides a comprehensive trichotomic evaluation of generative models.
We empirically demonstrate the ability of FLD to identify overfitting problem cases, even when previously proposed metrics fail.
arXiv Detail & Related papers (2023-02-09T04:57:27Z) - A Study on the Evaluation of Generative Models [19.18642459565609]
Implicit generative models, which do not return likelihood values, have become prevalent in recent years.
In this work, we study the evaluation metrics of generative models by generating a high-quality synthetic dataset.
Our study shows that while FID and IS do correlate to several f-divergences, their ranking of close models can vary considerably.
arXiv Detail & Related papers (2022-06-22T09:27:31Z) - How Faithful is your Synthetic Data? Sample-level Metrics for Evaluating
and Auditing Generative Models [95.8037674226622]
We introduce a 3-dimensional evaluation metric that characterizes the fidelity, diversity and generalization performance of any generative model in a domain-agnostic fashion.
Our metric unifies statistical divergence measures with precision-recall analysis, enabling sample- and distribution-level diagnoses of model fidelity and diversity.
arXiv Detail & Related papers (2021-02-17T18:25:30Z) - Evaluating the Interpretability of Generative Models by Interactive
Reconstruction [30.441247705313575]
We introduce a task to quantify the human-interpretability of generative model representations.
We find performance on this task much more reliably differentiates entangled and disentangled models than baseline approaches.
arXiv Detail & Related papers (2021-02-02T02:38:14Z) - Flow-based Generative Models for Learning Manifold to Manifold Mappings [39.60406116984869]
We introduce three kinds of invertible layers for manifold-valued data, which are analogous to their functionality in flow-based generative models.
We show promising results where we can reliably and accurately reconstruct brain images of a field of orientation distribution functions.
arXiv Detail & Related papers (2020-12-18T02:19:18Z) - Improving the Reconstruction of Disentangled Representation Learners via Multi-Stage Modeling [54.94763543386523]
Current autoencoder-based disentangled representation learning methods achieve disentanglement by penalizing the ( aggregate) posterior to encourage statistical independence of the latent factors.
We present a novel multi-stage modeling approach where the disentangled factors are first learned using a penalty-based disentangled representation learning method.
Then, the low-quality reconstruction is improved with another deep generative model that is trained to model the missing correlated latent variables.
arXiv Detail & Related papers (2020-10-25T18:51:15Z) - Automatic Recall Machines: Internal Replay, Continual Learning and the
Brain [104.38824285741248]
Replay in neural networks involves training on sequential data with memorized samples, which counteracts forgetting of previous behavior caused by non-stationarity.
We present a method where these auxiliary samples are generated on the fly, given only the model that is being trained for the assessed objective.
Instead the implicit memory of learned samples within the assessed model itself is exploited.
arXiv Detail & Related papers (2020-06-22T15:07:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.