Unified Embedding Based Personalized Retrieval in Etsy Search
- URL: http://arxiv.org/abs/2306.04833v2
- Date: Wed, 25 Sep 2024 17:01:50 GMT
- Title: Unified Embedding Based Personalized Retrieval in Etsy Search
- Authors: Rishikesh Jha, Siddharth Subramaniyam, Ethan Benjamin, Thrivikrama Taula,
- Abstract summary: We propose learning a unified embedding model incorporating graph, transformer and term-based embeddings end to end.
Our personalized retrieval model significantly improves the overall search experience, as measured by a 5.58% increase in search purchase rate and a 2.63% increase in site-wide conversion rate.
- Score: 0.206242362470764
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Embedding-based neural retrieval is a prevalent approach to address the semantic gap problem which often arises in product search on tail queries. In contrast, popular queries typically lack context and have a broad intent where additional context from users historical interaction can be helpful. In this paper, we share our novel approach to address both: the semantic gap problem followed by an end to end trained model for personalized semantic retrieval. We propose learning a unified embedding model incorporating graph, transformer and term-based embeddings end to end and share our design choices for optimal tradeoff between performance and efficiency. We share our learnings in feature engineering, hard negative sampling strategy, and application of transformer model, including a novel pre-training strategy and other tricks for improving search relevance and deploying such a model at industry scale. Our personalized retrieval model significantly improves the overall search experience, as measured by a 5.58% increase in search purchase rate and a 2.63% increase in site-wide conversion rate, aggregated across multiple A/B tests - on live traffic.
Related papers
- Learning to Rank for Multiple Retrieval-Augmented Models through Iterative Utility Maximization [21.115495457454365]
This paper investigates the design of a unified search engine to serve multiple retrieval-augmented generation (RAG) agents.
We introduce an iterative approach where the search engine generates retrieval results for these RAG agents and gathers feedback on the quality of the retrieved documents during an offline phase.
We adapt this approach to an online setting, allowing the search engine to refine its behavior based on real-time individual agents feedback.
arXiv Detail & Related papers (2024-10-13T17:53:50Z) - Query-oriented Data Augmentation for Session Search [71.84678750612754]
We propose query-oriented data augmentation to enrich search logs and empower the modeling.
We generate supplemental training pairs by altering the most important part of a search context.
We develop several strategies to alter the current query, resulting in new training data with varying degrees of difficulty.
arXiv Detail & Related papers (2024-07-04T08:08:33Z) - Contrastive Transformer Learning with Proximity Data Generation for
Text-Based Person Search [60.626459715780605]
Given a descriptive text query, text-based person search aims to retrieve the best-matched target person from an image gallery.
Such a cross-modal retrieval task is quite challenging due to significant modality gap, fine-grained differences and insufficiency of annotated data.
In this paper, we propose a simple yet effective dual Transformer model for text-based person search.
arXiv Detail & Related papers (2023-11-15T16:26:49Z) - Pre-trained Recommender Systems: A Causal Debiasing Perspective [19.712997823535066]
We develop a generic recommender that captures universal interaction patterns by training on generic user-item interaction data extracted from different domains.
Our empirical studies show that the proposed model could significantly improve the recommendation performance in zero- and few-shot learning settings.
arXiv Detail & Related papers (2023-10-30T03:37:32Z) - End-to-End Meta-Bayesian Optimisation with Transformer Neural Processes [52.818579746354665]
This paper proposes the first end-to-end differentiable meta-BO framework that generalises neural processes to learn acquisition functions via transformer architectures.
We enable this end-to-end framework with reinforcement learning (RL) to tackle the lack of labelled acquisition data.
arXiv Detail & Related papers (2023-05-25T10:58:46Z) - How Does Generative Retrieval Scale to Millions of Passages? [68.98628807288972]
We conduct the first empirical study of generative retrieval techniques across various corpus scales.
We scale generative retrieval to millions of passages with a corpus of 8.8M passages and evaluating model sizes up to 11B parameters.
While generative retrieval is competitive with state-of-the-art dual encoders on small corpora, scaling to millions of passages remains an important and unsolved challenge.
arXiv Detail & Related papers (2023-05-19T17:33:38Z) - Incorporating Relevance Feedback for Information-Seeking Retrieval using
Few-Shot Document Re-Ranking [56.80065604034095]
We introduce a kNN approach that re-ranks documents based on their similarity with the query and the documents the user considers relevant.
To evaluate our different integration strategies, we transform four existing information retrieval datasets into the relevance feedback scenario.
arXiv Detail & Related papers (2022-10-19T16:19:37Z) - Predicting Query-Item Relationship using Adversarial Training and Robust
Modeling Techniques [2.4442957793630584]
We present an effective way to predict search query-item relationship.
We combine pre-trained transformer and LSTM models, and increase model robustness using adversarial training.
Applying our strategies, we achieved 10th place in KDD Cup 2022 Product Substitution Classification task.
arXiv Detail & Related papers (2022-08-23T06:10:06Z) - HyperImpute: Generalized Iterative Imputation with Automatic Model
Selection [77.86861638371926]
We propose a generalized iterative imputation framework for adaptively and automatically configuring column-wise models.
We provide a concrete implementation with out-of-the-box learners, simulators, and interfaces.
arXiv Detail & Related papers (2022-06-15T19:10:35Z) - Heterogeneous Network Embedding for Deep Semantic Relevance Match in
E-commerce Search [29.881612817309716]
We design an end-to-end First-and-Second-order Relevance prediction model for e-commerce item relevance.
We introduce external knowledge generated from BERT to refine the network of user behaviors.
Results of offline experiments showed that the new model significantly improved the prediction accuracy in terms of human relevance judgment.
arXiv Detail & Related papers (2021-01-13T03:12:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.