Classical Verification of Quantum Learning
- URL: http://arxiv.org/abs/2306.04843v2
- Date: Thu, 7 Dec 2023 11:19:57 GMT
- Title: Classical Verification of Quantum Learning
- Authors: Matthias C. Caro, Marcel Hinsche, Marios Ioannou, Alexander Nietner,
Ryan Sweke
- Abstract summary: We develop a framework for classical verification of quantum learning.
We propose a new quantum data access model that we call "mixture-of-superpositions" quantum examples.
Our results demonstrate that the potential power of quantum data for learning tasks, while not unlimited, can be utilized by classical agents.
- Score: 42.362388367152256
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum data access and quantum processing can make certain classically
intractable learning tasks feasible. However, quantum capabilities will only be
available to a select few in the near future. Thus, reliable schemes that allow
classical clients to delegate learning to untrusted quantum servers are
required to facilitate widespread access to quantum learning advantages.
Building on a recently introduced framework of interactive proof systems for
classical machine learning, we develop a framework for classical verification
of quantum learning. We exhibit learning problems that a classical learner
cannot efficiently solve on their own, but that they can efficiently and
reliably solve when interacting with an untrusted quantum prover. Concretely,
we consider the problems of agnostic learning parities and Fourier-sparse
functions with respect to distributions with uniform input marginal. We propose
a new quantum data access model that we call "mixture-of-superpositions"
quantum examples, based on which we give efficient quantum learning algorithms
for these tasks. Moreover, we prove that agnostic quantum parity and
Fourier-sparse learning can be efficiently verified by a classical verifier
with only random example or statistical query access. Finally, we showcase two
general scenarios in learning and verification in which quantum
mixture-of-superpositions examples do not lead to sample complexity
improvements over classical data. Our results demonstrate that the potential
power of quantum data for learning tasks, while not unlimited, can be utilized
by classical agents through interaction with untrusted quantum entities.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Exponential quantum advantages in learning quantum observables from classical data [1.9662978733004604]
We prove quantum advantages for the physically relevant task of learning quantum observables from classical data.
Our results shed light on the utility of quantum computers for machine learning problems in the domain of quantum many body physics.
arXiv Detail & Related papers (2024-05-03T11:58:43Z) - Information-theoretic generalization bounds for learning from quantum data [5.0739329301140845]
We propose a general mathematical formalism for describing quantum learning by training on classical-quantum data.
We prove bounds on the expected generalization error of a quantum learner in terms of classical and quantum information-theoretic quantities.
Our work lays a foundation for a unifying quantum information-theoretic perspective on quantum learning.
arXiv Detail & Related papers (2023-11-09T17:21:38Z) - Statistical Complexity of Quantum Learning [32.48879688084909]
This article reviews the complexity of quantum learning using information-theoretic techniques.
We focus on data complexity, copy complexity, and model complexity.
We highlight the differences between quantum and classical learning by addressing both supervised and unsupervised learning.
arXiv Detail & Related papers (2023-09-20T20:04:05Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
We show how classical machine learning approach can help improve the facilities of quantum computers.
We discuss how quantum algorithms and quantum computers may be useful for solving classical machine learning tasks.
arXiv Detail & Related papers (2023-01-04T23:37:45Z) - Anticipative measurements in hybrid quantum-classical computation [68.8204255655161]
We present an approach where the quantum computation is supplemented by a classical result.
Taking advantage of its anticipation also leads to a new type of quantum measurements, which we call anticipative.
In an anticipative quantum measurement the combination of the results from classical and quantum computations happens only in the end.
arXiv Detail & Related papers (2022-09-12T15:47:44Z) - Classical surrogates for quantum learning models [0.7734726150561088]
We introduce the concept of a classical surrogate, a classical model which can be efficiently obtained from a trained quantum learning model.
We show that large classes of well-analyzed re-uploading models have a classical surrogate.
arXiv Detail & Related papers (2022-06-23T14:37:02Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
Quantum machine learning (QML) has emerged as a promising field that leans on the developments in quantum computing to explore large complex machine learning problems.
This paper proposes the first fully quantum federated learning framework that can operate over quantum data and, thus, share the learning of quantum circuit parameters in a decentralized manner.
arXiv Detail & Related papers (2021-05-30T12:19:27Z) - Power of data in quantum machine learning [2.1012068875084964]
We show that some problems that are classically hard to compute can be easily predicted by classical machines learning from data.
We propose a projected quantum model that provides a simple and rigorous quantum speed-up for a learning problem in the fault-tolerant regime.
arXiv Detail & Related papers (2020-11-03T19:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.