Augmenting Hessians with Inter-Layer Dependencies for Mixed-Precision
Post-Training Quantization
- URL: http://arxiv.org/abs/2306.04879v1
- Date: Thu, 8 Jun 2023 02:18:58 GMT
- Title: Augmenting Hessians with Inter-Layer Dependencies for Mixed-Precision
Post-Training Quantization
- Authors: Clemens JS Schaefer, Navid Lambert-Shirzad, Xiaofan Zhang, Chiachen
Chou, Tom Jablin, Jian Li, Elfie Guo, Caitlin Stanton, Siddharth Joshi, Yu
Emma Wang
- Abstract summary: We propose a mixed-precision post training quantization approach that assigns different numerical precisions to tensors in a network based on their specific needs.
Our experiments demonstrate latency reductions compared to a 16-bit baseline of $25.48%$, $21.69%$, and $33.28%$ respectively.
- Score: 7.392278887917975
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Efficiently serving neural network models with low latency is becoming more
challenging due to increasing model complexity and parameter count. Model
quantization offers a solution which simultaneously reduces memory footprint
and compute requirements. However, aggressive quantization may lead to an
unacceptable loss in model accuracy owing to differences in sensitivity to
numerical imperfection across different layers in the model. To address this
challenge, we propose a mixed-precision post training quantization (PTQ)
approach that assigns different numerical precisions to tensors in a network
based on their specific needs, for a reduced memory footprint and improved
latency while preserving model accuracy. Previous works rely on layer-wise
Hessian information to determine numerical precision, but as we demonstrate,
Hessian estimation is typically insufficient in determining an effective
ordering of layer sensitivities. We address this by augmenting the estimated
Hessian with additional information to capture inter-layer dependencies. We
demonstrate that this consistently improves PTQ performance along the
accuracy-latency Pareto frontier across multiple models. Our method combines
second-order information and inter-layer dependencies to guide a bisection
search, finding quantization configurations within a user-configurable model
accuracy degradation range. We evaluate the effectiveness of our method on the
ResNet50, MobileNetV2, and BERT models. Our experiments demonstrate latency
reductions compared to a 16-bit baseline of $25.48\%$, $21.69\%$, and $33.28\%$
respectively, while maintaining model accuracy to within $99.99\%$ of the
baseline model.
Related papers
- FLIQS: One-Shot Mixed-Precision Floating-Point and Integer Quantization Search [50.07268323597872]
We propose the first one-shot mixed-precision quantization search that eliminates the need for retraining in both integer and low-precision floating point models.
With integer models, we increase the accuracy of ResNet-18 on ImageNet by 1.31% and ResNet-50 by 0.90% with equivalent model cost over previous methods.
For the first time, we explore a novel mixed-precision floating-point search and improve MobileNetV2 by up to 0.98% compared to prior state-of-the-art FP8 models.
arXiv Detail & Related papers (2023-08-07T04:17:19Z) - Mixed Precision Post Training Quantization of Neural Networks with
Sensitivity Guided Search [7.392278887917975]
Mixed-precision quantization allows different tensors to be quantized to varying levels of numerical precision.
We evaluate our method for computer vision and natural language processing and demonstrate latency reductions of up to 27.59% and 34.31%.
arXiv Detail & Related papers (2023-02-02T19:30:00Z) - Neural Networks with Quantization Constraints [111.42313650830248]
We present a constrained learning approach to quantization training.
We show that the resulting problem is strongly dual and does away with gradient estimations.
We demonstrate that the proposed approach exhibits competitive performance in image classification tasks.
arXiv Detail & Related papers (2022-10-27T17:12:48Z) - Mixed-Precision Inference Quantization: Radically Towards Faster
inference speed, Lower Storage requirement, and Lower Loss [4.877532217193618]
Existing quantization techniques rely heavily on experience and "fine-tuning" skills.
This study provides a methodology for acquiring a mixed-precise quantization model with a lower loss than the full precision model.
In particular, we will demonstrate that neural networks with massive identity mappings are resistant to the quantization method.
arXiv Detail & Related papers (2022-07-20T10:55:34Z) - AMED: Automatic Mixed-Precision Quantization for Edge Devices [3.5223695602582614]
Quantized neural networks are well known for reducing the latency, power consumption, and model size without significant harm to the performance.
Mixed-precision quantization offers better utilization of customized hardware that supports arithmetic operations at different bitwidths.
arXiv Detail & Related papers (2022-05-30T21:23:22Z) - Investigating the Relationship Between Dropout Regularization and Model
Complexity in Neural Networks [0.0]
Dropout Regularization serves to reduce variance in Deep Learning models.
We explore the relationship between the dropout rate and model complexity by training 2,000 neural networks.
We build neural networks that predict the optimal dropout rate given the number of hidden units in each dense layer.
arXiv Detail & Related papers (2021-08-14T23:49:33Z) - Robust Implicit Networks via Non-Euclidean Contractions [63.91638306025768]
Implicit neural networks show improved accuracy and significant reduction in memory consumption.
They can suffer from ill-posedness and convergence instability.
This paper provides a new framework to design well-posed and robust implicit neural networks.
arXiv Detail & Related papers (2021-06-06T18:05:02Z) - Search What You Want: Barrier Panelty NAS for Mixed Precision
Quantization [51.26579110596767]
We propose a novel Barrier Penalty based NAS (BP-NAS) for mixed precision quantization.
BP-NAS sets new state of the arts on both classification (Cifar-10, ImageNet) and detection (COCO)
arXiv Detail & Related papers (2020-07-20T12:00:48Z) - APQ: Joint Search for Network Architecture, Pruning and Quantization
Policy [49.3037538647714]
We present APQ for efficient deep learning inference on resource-constrained hardware.
Unlike previous methods that separately search the neural architecture, pruning policy, and quantization policy, we optimize them in a joint manner.
With the same accuracy, APQ reduces the latency/energy by 2x/1.3x over MobileNetV2+HAQ.
arXiv Detail & Related papers (2020-06-15T16:09:17Z) - VecQ: Minimal Loss DNN Model Compression With Vectorized Weight
Quantization [19.66522714831141]
We develop a new quantization solution called VecQ, which can guarantee minimal direct quantization loss and better model accuracy.
In addition, in order to up the proposed quantization process during training, we accelerate the quantization process with a parameterized estimation and probability-based calculation.
arXiv Detail & Related papers (2020-05-18T07:38:44Z) - Widening and Squeezing: Towards Accurate and Efficient QNNs [125.172220129257]
Quantization neural networks (QNNs) are very attractive to the industry because their extremely cheap calculation and storage overhead, but their performance is still worse than that of networks with full-precision parameters.
Most of existing methods aim to enhance performance of QNNs especially binary neural networks by exploiting more effective training techniques.
We address this problem by projecting features in original full-precision networks to high-dimensional quantization features.
arXiv Detail & Related papers (2020-02-03T04:11:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.