A Causal Framework for Decomposing Spurious Variations
- URL: http://arxiv.org/abs/2306.05071v1
- Date: Thu, 8 Jun 2023 09:40:28 GMT
- Title: A Causal Framework for Decomposing Spurious Variations
- Authors: Drago Plecko, Elias Bareinboim
- Abstract summary: We develop tools for decomposing spurious variations in Markovian and Semi-Markovian models.
We prove the first results that allow a non-parametric decomposition of spurious effects.
The described approach has several applications, ranging from explainable and fair AI to questions in epidemiology and medicine.
- Score: 68.12191782657437
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: One of the fundamental challenges found throughout the data sciences is to
explain why things happen in specific ways, or through which mechanisms a
certain variable $X$ exerts influences over another variable $Y$. In statistics
and machine learning, significant efforts have been put into developing
machinery to estimate correlations across variables efficiently. In causal
inference, a large body of literature is concerned with the decomposition of
causal effects under the rubric of mediation analysis. However, many variations
are spurious in nature, including different phenomena throughout the applied
sciences. Despite the statistical power to estimate correlations and the
identification power to decompose causal effects, there is still little
understanding of the properties of spurious associations and how they can be
decomposed in terms of the underlying causal mechanisms. In this manuscript, we
develop formal tools for decomposing spurious variations in both Markovian and
Semi-Markovian models. We prove the first results that allow a non-parametric
decomposition of spurious effects and provide sufficient conditions for the
identification of such decompositions. The described approach has several
applications, ranging from explainable and fair AI to questions in epidemiology
and medicine, and we empirically demonstrate its use on a real-world dataset.
Related papers
- DAG-aware Transformer for Causal Effect Estimation [0.8192907805418583]
Causal inference is a critical task across fields such as healthcare, economics, and the social sciences.
In this paper, we present a novel transformer-based method for causal inference that overcomes these challenges.
The core innovation of our model lies in its integration of causal Directed Acyclic Graphs (DAGs) directly into the attention mechanism.
arXiv Detail & Related papers (2024-10-13T23:17:58Z) - Unifying Causal Representation Learning with the Invariance Principle [21.375611599649716]
Causal representation learning aims at recovering latent causal variables from high-dimensional observations.
Our main contribution is to show that many existing causal representation learning approaches methodologically align the representation to known data symmetries.
arXiv Detail & Related papers (2024-09-04T14:51:36Z) - Identifiable Latent Polynomial Causal Models Through the Lens of Change [82.14087963690561]
Causal representation learning aims to unveil latent high-level causal representations from observed low-level data.
One of its primary tasks is to provide reliable assurance of identifying these latent causal models, known as identifiability.
arXiv Detail & Related papers (2023-10-24T07:46:10Z) - Nonlinearity, Feedback and Uniform Consistency in Causal Structural
Learning [0.8158530638728501]
Causal Discovery aims to find automated search methods for learning causal structures from observational data.
This thesis focuses on two questions in causal discovery: (i) providing an alternative definition of k-Triangle Faithfulness that (i) is weaker than strong faithfulness when applied to the Gaussian family of distributions, and (ii) under the assumption that the modified version of Strong Faithfulness holds.
arXiv Detail & Related papers (2023-08-15T01:23:42Z) - Nonparametric Identifiability of Causal Representations from Unknown
Interventions [63.1354734978244]
We study causal representation learning, the task of inferring latent causal variables and their causal relations from mixtures of the variables.
Our goal is to identify both the ground truth latents and their causal graph up to a set of ambiguities which we show to be irresolvable from interventional data.
arXiv Detail & Related papers (2023-06-01T10:51:58Z) - Causal Discovery in Linear Structural Causal Models with Deterministic
Relations [27.06618125828978]
We focus on the task of causal discovery form observational data.
We derive a set of necessary and sufficient conditions for unique identifiability of the causal structure.
arXiv Detail & Related papers (2021-10-30T21:32:42Z) - Systematic Evaluation of Causal Discovery in Visual Model Based
Reinforcement Learning [76.00395335702572]
A central goal for AI and causality is the joint discovery of abstract representations and causal structure.
Existing environments for studying causal induction are poorly suited for this objective because they have complicated task-specific causal graphs.
In this work, our goal is to facilitate research in learning representations of high-level variables as well as causal structures among them.
arXiv Detail & Related papers (2021-07-02T05:44:56Z) - A Critical Look At The Identifiability of Causal Effects with Deep
Latent Variable Models [2.326384409283334]
We use causal effect variational autoencoder (CEVAE) as a case study.
CEVAE seems to work reliably under some simple scenarios, but it does not identify the correct causal effect with a misspecified latent variable or a complex data distribution.
Our results show that the question of identifiability cannot be disregarded, and we argue that more attention should be paid to it in future work.
arXiv Detail & Related papers (2021-02-12T17:43:18Z) - CausalVAE: Structured Causal Disentanglement in Variational Autoencoder [52.139696854386976]
The framework of variational autoencoder (VAE) is commonly used to disentangle independent factors from observations.
We propose a new VAE based framework named CausalVAE, which includes a Causal Layer to transform independent factors into causal endogenous ones.
Results show that the causal representations learned by CausalVAE are semantically interpretable, and their causal relationship as a Directed Acyclic Graph (DAG) is identified with good accuracy.
arXiv Detail & Related papers (2020-04-18T20:09:34Z) - A Critical View of the Structural Causal Model [89.43277111586258]
We show that one can identify the cause and the effect without considering their interaction at all.
We propose a new adversarial training method that mimics the disentangled structure of the causal model.
Our multidimensional method outperforms the literature methods on both synthetic and real world datasets.
arXiv Detail & Related papers (2020-02-23T22:52:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.