Focus for Free in Density-Based Counting
- URL: http://arxiv.org/abs/2306.05129v1
- Date: Thu, 8 Jun 2023 11:54:37 GMT
- Title: Focus for Free in Density-Based Counting
- Authors: Zenglin Shi, Pascal Mettes, Cees G.M. Snoek
- Abstract summary: We introduce two methods that repurpose the available point annotations to enhance counting performance.
The first is a counting-specific augmentation that leverages point annotations to simulate occluded objects in both input and density images.
The second method, foreground distillation, generates foreground masks from the point annotations, from which we train an auxiliary network on images with blacked-out backgrounds.
- Score: 56.961229110268036
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This work considers supervised learning to count from images and their
corresponding point annotations. Where density-based counting methods typically
use the point annotations only to create Gaussian-density maps, which act as
the supervision signal, the starting point of this work is that point
annotations have counting potential beyond density map generation. We introduce
two methods that repurpose the available point annotations to enhance counting
performance. The first is a counting-specific augmentation that leverages point
annotations to simulate occluded objects in both input and density images to
enhance the network's robustness to occlusions. The second method, foreground
distillation, generates foreground masks from the point annotations, from which
we train an auxiliary network on images with blacked-out backgrounds. By doing
so, it learns to extract foreground counting knowledge without interference
from the background. These methods can be seamlessly integrated with existing
counting advances and are adaptable to different loss functions. We demonstrate
complementary effects of the approaches, allowing us to achieve robust counting
results even in challenging scenarios such as background clutter, occlusion,
and varying crowd densities. Our proposed approach achieves strong counting
results on multiple datasets, including ShanghaiTech Part\_A and Part\_B,
UCF\_QNRF, JHU-Crowd++, and NWPU-Crowd.
Related papers
- Scale-Aware Crowd Counting Using a Joint Likelihood Density Map and
Synthetic Fusion Pyramid Network [15.882525477601183]
We develop a Synthetic Fusion Pyramid Network (SPF-Net) with a scale-aware loss function design for accurate crowd counting.
Existing crowd-counting methods assume that the training annotation points were accurate and thus ignore the fact that noisy annotations can lead to large model-learning bias and counting error.
This work is the first to properly handle such noise at multiple scales in end-to-end loss design and thus push the crowd counting state-of-the-art.
arXiv Detail & Related papers (2022-11-13T06:52:47Z) - Self-Supervised Arbitrary-Scale Point Clouds Upsampling via Implicit
Neural Representation [79.60988242843437]
We propose a novel approach that achieves self-supervised and magnification-flexible point clouds upsampling simultaneously.
Experimental results demonstrate that our self-supervised learning based scheme achieves competitive or even better performance than supervised learning based state-of-the-art methods.
arXiv Detail & Related papers (2022-04-18T07:18:25Z) - LEAD: Self-Supervised Landmark Estimation by Aligning Distributions of
Feature Similarity [49.84167231111667]
Existing works in self-supervised landmark detection are based on learning dense (pixel-level) feature representations from an image.
We introduce an approach to enhance the learning of dense equivariant representations in a self-supervised fashion.
We show that having such a prior in the feature extractor helps in landmark detection, even under drastically limited number of annotations.
arXiv Detail & Related papers (2022-04-06T17:48:18Z) - PANet: Perspective-Aware Network with Dynamic Receptive Fields and
Self-Distilling Supervision for Crowd Counting [63.84828478688975]
We propose a novel perspective-aware approach called PANet to address the perspective problem.
Based on the observation that the size of the objects varies greatly in one image due to the perspective effect, we propose the dynamic receptive fields (DRF) framework.
The framework is able to adjust the receptive field by the dilated convolution parameters according to the input image, which helps the model to extract more discriminative features for each local region.
arXiv Detail & Related papers (2021-10-31T04:43:05Z) - Semi-Supervised Crowd Counting via Self-Training on Surrogate Tasks [50.78037828213118]
This paper tackles the semi-supervised crowd counting problem from the perspective of feature learning.
We propose a novel semi-supervised crowd counting method which is built upon two innovative components.
arXiv Detail & Related papers (2020-07-07T05:30:53Z) - Towards Using Count-level Weak Supervision for Crowd Counting [55.58468947486247]
This paper studies the problem of weakly-supervised crowd counting which learns a model from only a small amount of location-level annotations (fully-supervised) but a large amount of count-level annotations (weakly-supervised)
We devise a simple-yet-effective training strategy, namely Multiple Auxiliary Tasks Training (MATT), to construct regularizes for restricting the freedom of the generated density maps.
arXiv Detail & Related papers (2020-02-29T02:58:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.