Large-scale Dataset Pruning with Dynamic Uncertainty
- URL: http://arxiv.org/abs/2306.05175v3
- Date: Fri, 14 Jun 2024 05:10:07 GMT
- Title: Large-scale Dataset Pruning with Dynamic Uncertainty
- Authors: Muyang He, Shuo Yang, Tiejun Huang, Bo Zhao,
- Abstract summary: The state of the art of many learning tasks, e.g., image classification, is advanced by collecting larger datasets and then training larger models on them.
In this paper, we investigate how to prune the large-scale datasets, and thus produce an informative subset for training sophisticated deep models with negligible performance drop.
- Score: 28.60845105174658
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The state of the art of many learning tasks, e.g., image classification, is advanced by collecting larger datasets and then training larger models on them. As the outcome, the increasing computational cost is becoming unaffordable. In this paper, we investigate how to prune the large-scale datasets, and thus produce an informative subset for training sophisticated deep models with negligible performance drop. We propose a simple yet effective dataset pruning method by exploring both the prediction uncertainty and training dynamics. We study dataset pruning by measuring the variation of predictions during the whole training process on large-scale datasets, i.e., ImageNet-1K and ImageNet-21K, and advanced models, i.e., Swin Transformer and ConvNeXt. Extensive experimental results indicate that our method outperforms the state of the art and achieves 25% lossless pruning ratio on both ImageNet-1K and ImageNet-21K. The code and pruned datasets are available at https://github.com/BAAI-DCAI/Dataset-Pruning.
Related papers
- SCAN: Bootstrapping Contrastive Pre-training for Data Efficiency [10.555957282859]
This paper introduces a novel dynamic bootstrapping dataset pruning method.
It involves pruning data preparation followed by dataset mutation operations, both of which undergo iterative and dynamic updates.
We individually pre-train seven CLIP models on two large-scale image-text pair datasets, and two MoCo models on the ImageNet dataset, resulting in a total of 16 pre-trained models.
arXiv Detail & Related papers (2024-11-14T01:53:17Z) - Effective pruning of web-scale datasets based on complexity of concept
clusters [48.125618324485195]
We present a method for pruning large-scale multimodal datasets for training CLIP-style models on ImageNet.
We find that training on a smaller set of high-quality data can lead to higher performance with significantly lower training costs.
We achieve a new state-of-the-art Imagehttps://info.arxiv.org/help/prep#commentsNet zero-shot accuracy and a competitive average zero-shot accuracy on 38 evaluation tasks.
arXiv Detail & Related papers (2024-01-09T14:32:24Z) - A Simple and Efficient Baseline for Data Attribution on Images [107.12337511216228]
Current state-of-the-art approaches require a large ensemble of as many as 300,000 models to accurately attribute model predictions.
In this work, we focus on a minimalist baseline, utilizing the feature space of a backbone pretrained via self-supervised learning to perform data attribution.
Our method is model-agnostic and scales easily to large datasets.
arXiv Detail & Related papers (2023-11-03T17:29:46Z) - Dataset Quantization [72.61936019738076]
We present dataset quantization (DQ), a new framework to compress large-scale datasets into small subsets.
DQ is the first method that can successfully distill large-scale datasets such as ImageNet-1k with a state-of-the-art compression ratio.
arXiv Detail & Related papers (2023-08-21T07:24:29Z) - Delving Deeper into Data Scaling in Masked Image Modeling [145.36501330782357]
We conduct an empirical study on the scaling capability of masked image modeling (MIM) methods for visual recognition.
Specifically, we utilize the web-collected Coyo-700M dataset.
Our goal is to investigate how the performance changes on downstream tasks when scaling with different sizes of data and models.
arXiv Detail & Related papers (2023-05-24T15:33:46Z) - Where Should I Spend My FLOPS? Efficiency Evaluations of Visual
Pre-training Methods [29.141145775835106]
Given a fixed FLOP budget, what are the best datasets, models, and (self-supervised) training methods for obtaining high accuracy on representative visual tasks?
We examine five large-scale datasets (JFT-300M, ALIGN, ImageNet-1K, ImageNet-21K, and COCO) and six pre-training methods (CLIP, DINO, SimCLR, BYOL, Masked Autoencoding, and supervised)
Our results call into question the commonly-held assumption that self-supervised methods inherently scale to large, uncurated data.
arXiv Detail & Related papers (2022-09-30T17:04:55Z) - Self-Supervised Pre-Training for Transformer-Based Person
Re-Identification [54.55281692768765]
Transformer-based supervised pre-training achieves great performance in person re-identification (ReID)
Due to the domain gap between ImageNet and ReID datasets, it usually needs a larger pre-training dataset to boost the performance.
This work aims to mitigate the gap between the pre-training and ReID datasets from the perspective of data and model structure.
arXiv Detail & Related papers (2021-11-23T18:59:08Z) - Efficient Conditional Pre-training for Transfer Learning [71.01129334495553]
We propose efficient filtering methods to select relevant subsets from the pre-training dataset.
We validate our techniques by pre-training on ImageNet in both the unsupervised and supervised settings.
We improve standard ImageNet pre-training by 1-3% by tuning available models on our subsets and pre-training on a dataset filtered from a larger scale dataset.
arXiv Detail & Related papers (2020-11-20T06:16:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.