Revisit Few-shot Intent Classification with PLMs: Direct Fine-tuning vs. Continual Pre-training
- URL: http://arxiv.org/abs/2306.05278v2
- Date: Sun, 15 Sep 2024 16:07:55 GMT
- Title: Revisit Few-shot Intent Classification with PLMs: Direct Fine-tuning vs. Continual Pre-training
- Authors: Haode Zhang, Haowen Liang, Liming Zhan, Albert Y. S. Lam, Xiao-Ming Wu,
- Abstract summary: Few-shot intent detection involves training a deep learning model to classify utterances based on their underlying intents using only a small amount of labeled data.
We show that continual pre-training may not be essential, since the overfitting problem of PLMs on this task may not be as serious as expected.
To maximize the utilization of the limited available data, we propose a context augmentation method and leverage sequential self-distillation to boost performance.
- Score: 20.98770732015944
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider the task of few-shot intent detection, which involves training a deep learning model to classify utterances based on their underlying intents using only a small amount of labeled data. The current approach to address this problem is through continual pre-training, i.e., fine-tuning pre-trained language models (PLMs) on external resources (e.g., conversational corpora, public intent detection datasets, or natural language understanding datasets) before using them as utterance encoders for training an intent classifier. In this paper, we show that continual pre-training may not be essential, since the overfitting problem of PLMs on this task may not be as serious as expected. Specifically, we find that directly fine-tuning PLMs on only a handful of labeled examples already yields decent results compared to methods that employ continual pre-training, and the performance gap diminishes rapidly as the number of labeled data increases. To maximize the utilization of the limited available data, we propose a context augmentation method and leverage sequential self-distillation to boost performance. Comprehensive experiments on real-world benchmarks show that given only two or more labeled samples per class, direct fine-tuning outperforms many strong baselines that utilize external data sources for continual pre-training. The code can be found at https://github.com/hdzhang-code/DFTPlus.
Related papers
- Co-training for Low Resource Scientific Natural Language Inference [65.37685198688538]
We propose a novel co-training method that assigns weights based on the training dynamics of the classifiers to the distantly supervised labels.
By assigning importance weights instead of filtering out examples based on an arbitrary threshold on the predicted confidence, we maximize the usage of automatically labeled data.
The proposed method obtains an improvement of 1.5% in Macro F1 over the distant supervision baseline, and substantial improvements over several other strong SSL baselines.
arXiv Detail & Related papers (2024-06-20T18:35:47Z) - Prior-Free Continual Learning with Unlabeled Data in the Wild [24.14279172551939]
We propose a Prior-Free Continual Learning (PFCL) method to incrementally update a trained model on new tasks.
PFCL learns new tasks without knowing the task identity or any previous data.
Our experiments show that our PFCL method significantly mitigates forgetting in all three learning scenarios.
arXiv Detail & Related papers (2023-10-16T13:59:56Z) - When Less is More: Investigating Data Pruning for Pretraining LLMs at
Scale [12.94829977468838]
Large volumes of text data have contributed significantly to the development of large language models.
To date, efforts to prune datasets down to a higher quality subset have relied on hand-crafteds encoded as rule-based filters.
We take a wider view and explore scalable estimates of data quality that can be used to measure the quality of pretraining data.
arXiv Detail & Related papers (2023-09-08T19:34:05Z) - Selective In-Context Data Augmentation for Intent Detection using
Pointwise V-Information [100.03188187735624]
We introduce a novel approach based on PLMs and pointwise V-information (PVI), a metric that can measure the usefulness of a datapoint for training a model.
Our method first fine-tunes a PLM on a small seed of training data and then synthesizes new datapoints - utterances that correspond to given intents.
Our method is thus able to leverage the expressive power of large language models to produce diverse training data.
arXiv Detail & Related papers (2023-02-10T07:37:49Z) - Self-Distillation for Further Pre-training of Transformers [83.84227016847096]
We propose self-distillation as a regularization for a further pre-training stage.
We empirically validate the efficacy of self-distillation on a variety of benchmark datasets for image and text classification tasks.
arXiv Detail & Related papers (2022-09-30T02:25:12Z) - On the Transferability of Pre-trained Language Models: A Study from
Artificial Datasets [74.11825654535895]
Pre-training language models (LMs) on large-scale unlabeled text data makes the model much easier to achieve exceptional downstream performance.
We study what specific traits in the pre-training data, other than the semantics, make a pre-trained LM superior to their counterparts trained from scratch on downstream tasks.
arXiv Detail & Related papers (2021-09-08T10:39:57Z) - Self-training Improves Pre-training for Natural Language Understanding [63.78927366363178]
We study self-training as another way to leverage unlabeled data through semi-supervised learning.
We introduce SentAugment, a data augmentation method which computes task-specific query embeddings from labeled data.
Our approach leads to scalable and effective self-training with improvements of up to 2.6% on standard text classification benchmarks.
arXiv Detail & Related papers (2020-10-05T17:52:25Z) - Transfer Learning or Self-supervised Learning? A Tale of Two Pretraining
Paradigms [36.04356511882304]
Self-supervised learning (SSL) has demonstrated promising results on a wide range of applications.
There has not been a clear understanding on what properties of data and tasks render one approach outperforms the other.
arXiv Detail & Related papers (2020-06-19T05:21:00Z) - Omni-supervised Facial Expression Recognition via Distilled Data [120.11782405714234]
We propose omni-supervised learning to exploit reliable samples in a large amount of unlabeled data for network training.
We experimentally verify that the new dataset can significantly improve the ability of the learned FER model.
To tackle this, we propose to apply a dataset distillation strategy to compress the created dataset into several informative class-wise images.
arXiv Detail & Related papers (2020-05-18T09:36:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.