Robust Explainer Recommendation for Time Series Classification
- URL: http://arxiv.org/abs/2306.05501v4
- Date: Thu, 30 May 2024 18:26:06 GMT
- Title: Robust Explainer Recommendation for Time Series Classification
- Authors: Thu Trang Nguyen, Thach Le Nguyen, Georgiana Ifrim,
- Abstract summary: Time series classification is a task common in domains such as human activity recognition, sports analytics and general sensing.
Recently, a great variety of techniques have been proposed and adapted for time series to provide explanation in the form of saliency maps.
This paper provides a novel framework to quantitatively evaluate and rank explanation methods for time series classification.
- Score: 4.817429789586127
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Time series classification is a task which deals with temporal sequences, a prevalent data type common in domains such as human activity recognition, sports analytics and general sensing. In this area, interest in explainability has been growing as explanation is key to understand the data and the model better. Recently, a great variety of techniques have been proposed and adapted for time series to provide explanation in the form of saliency maps, where the importance of each data point in the time series is quantified with a numerical value. However, the saliency maps can and often disagree, so it is unclear which one to use. This paper provides a novel framework to quantitatively evaluate and rank explanation methods for time series classification. We show how to robustly evaluate the informativeness of a given explanation method (i.e., relevance for the classification task), and how to compare explanations side-by-side. The goal is to recommend the best explainer for a given time series classification dataset. We propose AMEE, a Model-Agnostic Explanation Evaluation framework, for recommending saliency-based explanations for time series classification. In this approach, data perturbation is added to the input time series guided by each explanation. Our results show that perturbing discriminative parts of the time series leads to significant changes in classification accuracy, which can be used to evaluate each explanation. To be robust to different types of perturbations and different types of classifiers, we aggregate the accuracy loss across perturbations and classifiers. This novel approach allows us to recommend the best explainer among a set of different explainers, including random and oracle explainers. We provide a quantitative and qualitative analysis for synthetic datasets, a variety of timeseries datasets, as well as a real-world case study with known expert ground truth.
Related papers
- TimeSiam: A Pre-Training Framework for Siamese Time-Series Modeling [67.02157180089573]
Time series pre-training has recently garnered wide attention for its potential to reduce labeling expenses and benefit various downstream tasks.
This paper proposes TimeSiam as a simple but effective self-supervised pre-training framework for Time series based on Siamese networks.
arXiv Detail & Related papers (2024-02-04T13:10:51Z) - Evaluating Explanation Methods for Multivariate Time Series
Classification [4.817429789586127]
The main focus of this paper is on analysing and evaluating explanation methods tailored to Multivariate Time Series Classification (MTSC)
We focus on saliency-based explanation methods that can point out the most relevant channels and time series points for the classification decision.
We study these methods on 3 synthetic datasets and 2 real-world datasets and provide a quantitative and qualitative analysis of the explanations provided.
arXiv Detail & Related papers (2023-08-29T11:24:12Z) - Time Series Contrastive Learning with Information-Aware Augmentations [57.45139904366001]
A key component of contrastive learning is to select appropriate augmentations imposing some priors to construct feasible positive samples.
How to find the desired augmentations of time series data that are meaningful for given contrastive learning tasks and datasets remains an open question.
We propose a new contrastive learning approach with information-aware augmentations, InfoTS, that adaptively selects optimal augmentations for time series representation learning.
arXiv Detail & Related papers (2023-03-21T15:02:50Z) - Generic Temporal Reasoning with Differential Analysis and Explanation [61.96034987217583]
We introduce a novel task named TODAY that bridges the gap with temporal differential analysis.
TODAY evaluates whether systems can correctly understand the effect of incremental changes.
We show that TODAY's supervision style and explanation annotations can be used in joint learning.
arXiv Detail & Related papers (2022-12-20T17:40:03Z) - COSTI: a New Classifier for Sequences of Temporal Intervals [0.0]
We develop a novel method for classification operating directly on sequences of temporal intervals.
The proposed method remains at a high level of accuracy and obtains better performance while avoiding shortcomings connected to operating on transformed data.
arXiv Detail & Related papers (2022-04-28T12:55:06Z) - Cluster-and-Conquer: A Framework For Time-Series Forecasting [94.63501563413725]
We propose a three-stage framework for forecasting high-dimensional time-series data.
Our framework is highly general, allowing for any time-series forecasting and clustering method to be used in each step.
When instantiated with simple linear autoregressive models, we are able to achieve state-of-the-art results on several benchmark datasets.
arXiv Detail & Related papers (2021-10-26T20:41:19Z) - Novel Features for Time Series Analysis: A Complex Networks Approach [62.997667081978825]
Time series data are ubiquitous in several domains as climate, economics and health care.
Recent conceptual approach relies on time series mapping to complex networks.
Network analysis can be used to characterize different types of time series.
arXiv Detail & Related papers (2021-10-11T13:46:28Z) - Time Series Analysis via Network Science: Concepts and Algorithms [62.997667081978825]
This review provides a comprehensive overview of existing mapping methods for transforming time series into networks.
We describe the main conceptual approaches, provide authoritative references and give insight into their advantages and limitations in a unified notation and language.
Although still very recent, this research area has much potential and with this survey we intend to pave the way for future research on the topic.
arXiv Detail & Related papers (2021-10-11T13:33:18Z) - Explainable Multivariate Time Series Classification: A Deep Neural
Network Which Learns To Attend To Important Variables As Well As Informative
Time Intervals [32.30627405832656]
Time series data is prevalent in a wide variety of real-world applications.
Key criterion to understand such predictive models involves elucidating and quantifying the contribution of time varying input variables to the classification.
We introduce a novel, modular, convolution-based feature extraction and attention mechanism that simultaneously identifies the variables as well as time intervals which determine the classification output.
arXiv Detail & Related papers (2020-11-23T19:16:46Z) - Instance-based Counterfactual Explanations for Time Series
Classification [11.215352918313577]
We advance a novel model-agnostic, case-based technique that generates counterfactual explanations for time series classifiers.
We show that Native Guide generates plausible, proximal, sparse and diverse explanations that are better than those produced by key benchmark counterfactual methods.
arXiv Detail & Related papers (2020-09-28T10:52:48Z) - Complexity Measures and Features for Times Series classification [0.0]
We propose a set of characteristics capable of extracting information on the structure of the time series to face time series classification problems.
The experimental results of our proposal show no statistically significant differences from the second and third best models of the state-of-the-art.
arXiv Detail & Related papers (2020-02-27T11:08:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.