LOST: A Mental Health Dataset of Low Self-esteem in Reddit Posts
- URL: http://arxiv.org/abs/2306.05596v1
- Date: Thu, 8 Jun 2023 23:52:35 GMT
- Title: LOST: A Mental Health Dataset of Low Self-esteem in Reddit Posts
- Authors: Muskan Garg, Manas Gaur, Raxit Goswami, Sunghwan Sohn
- Abstract summary: Low self-esteem and interpersonal needs have a major impact on depression and suicide attempts.
Individuals seek social connectedness on social media to boost and alleviate their loneliness.
We introduce a psychology-grounded and expertly annotated dataset, LoST: Low Self esTeem, to study and detect low self-esteem on Reddit.
- Score: 4.6071451559137175
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Low self-esteem and interpersonal needs (i.e., thwarted belongingness (TB)
and perceived burdensomeness (PB)) have a major impact on depression and
suicide attempts. Individuals seek social connectedness on social media to
boost and alleviate their loneliness. Social media platforms allow people to
express their thoughts, experiences, beliefs, and emotions. Prior studies on
mental health from social media have focused on symptoms, causes, and
disorders. Whereas an initial screening of social media content for
interpersonal risk factors and low self-esteem may raise early alerts and
assign therapists to at-risk users of mental disturbance. Standardized scales
measure self-esteem and interpersonal needs from questions created using
psychological theories. In the current research, we introduce a
psychology-grounded and expertly annotated dataset, LoST: Low Self esTeem, to
study and detect low self-esteem on Reddit. Through an annotation approach
involving checks on coherence, correctness, consistency, and reliability, we
ensure gold-standard for supervised learning. We present results from different
deep language models tested using two data augmentation techniques. Our
findings suggest developing a class of language models that infuses
psychological and clinical knowledge.
Related papers
- MentalArena: Self-play Training of Language Models for Diagnosis and Treatment of Mental Health Disorders [59.515827458631975]
Mental health disorders are one of the most serious diseases in the world.
Privacy concerns limit the accessibility of personalized treatment data.
MentalArena is a self-play framework to train language models.
arXiv Detail & Related papers (2024-10-09T13:06:40Z) - Quantifying AI Psychology: A Psychometrics Benchmark for Large Language Models [57.518784855080334]
Large Language Models (LLMs) have demonstrated exceptional task-solving capabilities, increasingly adopting roles akin to human-like assistants.
This paper presents a framework for investigating psychology dimension in LLMs, including psychological identification, assessment dataset curation, and assessment with results validation.
We introduce a comprehensive psychometrics benchmark for LLMs that covers six psychological dimensions: personality, values, emotion, theory of mind, motivation, and intelligence.
arXiv Detail & Related papers (2024-06-25T16:09:08Z) - PsychoGAT: A Novel Psychological Measurement Paradigm through Interactive Fiction Games with LLM Agents [68.50571379012621]
Psychological measurement is essential for mental health, self-understanding, and personal development.
PsychoGAT (Psychological Game AgenTs) achieves statistically significant excellence in psychometric metrics such as reliability, convergent validity, and discriminant validity.
arXiv Detail & Related papers (2024-02-19T18:00:30Z) - The Role of Likes: How Online Feedback Impacts Users' Mental Health [1.0156836684627544]
We analyse the impact of receiving online feedback on users' emotional experience, social connectedness and self-esteem.
We find that experiencing little to no reaction from others does not only elicit negative emotions amongst users, but also induces low levels of self-esteem.
In contrast, receiving much positive online feedback, evokes feelings of social connectedness and reduces overall loneliness.
arXiv Detail & Related papers (2023-12-19T07:48:10Z) - LonXplain: Lonesomeness as a Consequence of Mental Disturbance in Reddit
Posts [0.41998444721319217]
Social media is a potential source of information that infers latent mental states through Natural Language Processing (NLP)
Existing literature on psychological theories points to loneliness as the major consequence of interpersonal risk factors.
We formulate lonesomeness detection in social media posts as an explainable binary classification problem.
arXiv Detail & Related papers (2023-05-30T04:21:24Z) - UATTA-EB: Uncertainty-Aware Test-Time Augmented Ensemble of BERTs for
Classifying Common Mental Illnesses on Social Media Posts [0.0]
We propose UATTA-EB: Uncertainty-Aware Test-Time Augmented Ensembling of BERTs for producing reliable and well-calibrated predictions.
We analyze unstructured user data on Reddit to classify six possible types of mental illnesses- None, Depression, Anxiety, Bipolar Disorder, ADHD, and PTSD.
arXiv Detail & Related papers (2023-04-10T12:18:53Z) - Neural Theory-of-Mind? On the Limits of Social Intelligence in Large LMs [77.88043871260466]
We show that one of today's largest language models lacks this kind of social intelligence out-of-the box.
We conclude that person-centric NLP approaches might be more effective towards neural Theory of Mind.
arXiv Detail & Related papers (2022-10-24T14:58:58Z) - Mental Illness Classification on Social Media Texts using Deep Learning
and Transfer Learning [55.653944436488786]
According to the World health organization (WHO), approximately 450 million people are affected.
Mental illnesses, such as depression, anxiety, bipolar disorder, ADHD, and PTSD.
This study analyzes unstructured user data on Reddit platform and classifies five common mental illnesses: depression, anxiety, bipolar disorder, ADHD, and PTSD.
arXiv Detail & Related papers (2022-07-03T11:33:52Z) - Detection and Classification of mental illnesses on social media using
RoBERTa [0.3753841394482697]
In this work, we detect and classify five prominent kinds of mental illnesses: depression, anxiety, bipolar disorder, ADHD and PTSD.
We believe that our work is the first multi-class model that uses a Transformer-based architecture such as RoBERTa to analyze people's emotions and psychology.
arXiv Detail & Related papers (2020-11-23T05:54:46Z) - Suicidal Ideation and Mental Disorder Detection with Attentive Relation
Networks [43.2802002858859]
This paper enhances text representation with lexicon-based sentiment scores and latent topics.
It proposes using relation networks to detect suicidal ideation and mental disorders with related risk indicators.
arXiv Detail & Related papers (2020-04-16T11:18:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.