An End-to-End Reinforcement Learning Approach for Job-Shop Scheduling
Problems Based on Constraint Programming
- URL: http://arxiv.org/abs/2306.05747v1
- Date: Fri, 9 Jun 2023 08:24:56 GMT
- Title: An End-to-End Reinforcement Learning Approach for Job-Shop Scheduling
Problems Based on Constraint Programming
- Authors: Pierre Tassel, Martin Gebser, Konstantin Schekotihin
- Abstract summary: This paper proposes a novel end-to-end approach to solving scheduling problems by means of CP and Reinforcement Learning (RL)
Our approach leverages existing CP solvers to train an agent learning a Priority Dispatching Rule (PDR) that generalizes well to large instances, even from separate datasets.
- Score: 5.070542698701157
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Constraint Programming (CP) is a declarative programming paradigm that allows
for modeling and solving combinatorial optimization problems, such as the
Job-Shop Scheduling Problem (JSSP). While CP solvers manage to find optimal or
near-optimal solutions for small instances, they do not scale well to large
ones, i.e., they require long computation times or yield low-quality solutions.
Therefore, real-world scheduling applications often resort to fast,
handcrafted, priority-based dispatching heuristics to find a good initial
solution and then refine it using optimization methods.
This paper proposes a novel end-to-end approach to solving scheduling
problems by means of CP and Reinforcement Learning (RL). In contrast to
previous RL methods, tailored for a given problem by including procedural
simulation algorithms, complex feature engineering, or handcrafted reward
functions, our neural-network architecture and training algorithm merely
require a generic CP encoding of some scheduling problem along with a set of
small instances. Our approach leverages existing CP solvers to train an agent
learning a Priority Dispatching Rule (PDR) that generalizes well to large
instances, even from separate datasets. We evaluate our method on seven JSSP
datasets from the literature, showing its ability to find higher-quality
solutions for very large instances than obtained by static PDRs and by a CP
solver within the same time limit.
Related papers
- Leveraging Constraint Programming in a Deep Learning Approach for Dynamically Solving the Flexible Job-Shop Scheduling Problem [1.3927943269211593]
This paper aims to integrate constraint programming (CP) within a deep learning (DL) based methodology, leveraging the benefits of both.
We introduce a method that involves training a DL model using optimal solutions generated by CP, ensuring the model learns from high-quality data.
Our hybrid approach has been extensively tested on three public FJSSP benchmarks, demonstrating superior performance over five state-of-the-art DRL approaches.
arXiv Detail & Related papers (2024-03-14T10:16:57Z) - Accelerating Exact Combinatorial Optimization via RL-based
Initialization -- A Case Study in Scheduling [1.3053649021965603]
This research aims to develop an innovative approach that employs machine learning (ML) for addressing optimization problems.
We introduce a novel two-phase RL-to-ILP scheduling framework, which includes three steps: 1) solver as coarse-grain scheduler, 2) solution relaxation and 3) exact solving via ILP.
Our framework demonstrates the same scheduling performance compared with using exact scheduling methods while achieving up to 128 $times$ speed improvements.
arXiv Detail & Related papers (2023-08-19T15:52:43Z) - Learning to Optimize Permutation Flow Shop Scheduling via Graph-based
Imitation Learning [70.65666982566655]
Permutation flow shop scheduling (PFSS) is widely used in manufacturing systems.
We propose to train the model via expert-driven imitation learning, which accelerates convergence more stably and accurately.
Our model's network parameters are reduced to only 37% of theirs, and the solution gap of our model towards the expert solutions decreases from 6.8% to 1.3% on average.
arXiv Detail & Related papers (2022-10-31T09:46:26Z) - Better than the Best: Gradient-based Improper Reinforcement Learning for
Network Scheduling [60.48359567964899]
We consider the problem of scheduling in constrained queueing networks with a view to minimizing packet delay.
We use a policy gradient based reinforcement learning algorithm that produces a scheduler that performs better than the available atomic policies.
arXiv Detail & Related papers (2021-05-01T10:18:34Z) - Learning to Schedule Heuristics in Branch-and-Bound [25.79025327341732]
Real-world applications typically require finding good solutions early in the search to enable fast decision-making.
We propose the first data-driven framework for schedulings in an exact MIP solver.
Compared to the default settings of a state-of-the-art academic MIP solver, we are able to reduce the average primal integral by up to 49% on a class of challenging instances.
arXiv Detail & Related papers (2021-03-18T14:49:52Z) - A Two-stage Framework and Reinforcement Learning-based Optimization
Algorithms for Complex Scheduling Problems [54.61091936472494]
We develop a two-stage framework, in which reinforcement learning (RL) and traditional operations research (OR) algorithms are combined together.
The scheduling problem is solved in two stages, including a finite Markov decision process (MDP) and a mixed-integer programming process, respectively.
Results show that the proposed algorithms could stably and efficiently obtain satisfactory scheduling schemes for agile Earth observation satellite scheduling problems.
arXiv Detail & Related papers (2021-03-10T03:16:12Z) - Deep Policy Dynamic Programming for Vehicle Routing Problems [89.96386273895985]
We propose Deep Policy Dynamic Programming (D PDP) to combine the strengths of learned neurals with those of dynamic programming algorithms.
D PDP prioritizes and restricts the DP state space using a policy derived from a deep neural network, which is trained to predict edges from example solutions.
We evaluate our framework on the travelling salesman problem (TSP) and the vehicle routing problem (VRP) and show that the neural policy improves the performance of (restricted) DP algorithms.
arXiv Detail & Related papers (2021-02-23T15:33:57Z) - Towards Optimally Efficient Tree Search with Deep Learning [76.64632985696237]
This paper investigates the classical integer least-squares problem which estimates signals integer from linear models.
The problem is NP-hard and often arises in diverse applications such as signal processing, bioinformatics, communications and machine learning.
We propose a general hyper-accelerated tree search (HATS) algorithm by employing a deep neural network to estimate the optimal estimation for the underlying simplified memory-bounded A* algorithm.
arXiv Detail & Related papers (2021-01-07T08:00:02Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
Security-constrained optimal power flow (SCOPF) is fundamental in power systems.
Modeling of APR within the SCOPF problem results in complex large-scale mixed-integer programs.
This paper proposes a novel approach that combines deep learning and robust optimization techniques.
arXiv Detail & Related papers (2020-07-14T12:38:21Z) - A Novel Multi-Agent System for Complex Scheduling Problems [2.294014185517203]
This paper is the conception and implementation of a multi-agent system that is applicable in various problem domains.
We simulate a NP-hard scheduling problem to demonstrate the validity of our approach.
This paper highlights the advantages of the agent-based approach, like the reduction in layout complexity, improved control of complicated systems, and extendability.
arXiv Detail & Related papers (2020-04-20T14:04:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.