How Can Recommender Systems Benefit from Large Language Models: A Survey
- URL: http://arxiv.org/abs/2306.05817v6
- Date: Tue, 9 Jul 2024 13:17:52 GMT
- Title: How Can Recommender Systems Benefit from Large Language Models: A Survey
- Authors: Jianghao Lin, Xinyi Dai, Yunjia Xi, Weiwen Liu, Bo Chen, Hao Zhang, Yong Liu, Chuhan Wu, Xiangyang Li, Chenxu Zhu, Huifeng Guo, Yong Yu, Ruiming Tang, Weinan Zhang,
- Abstract summary: Large language models (LLM) have shown impressive general intelligence and human-like capabilities.
We conduct a comprehensive survey on this research direction from the perspective of the whole pipeline in real-world recommender systems.
- Score: 82.06729592294322
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the rapid development of online services, recommender systems (RS) have become increasingly indispensable for mitigating information overload. Despite remarkable progress, conventional recommendation models (CRM) still have some limitations, e.g., lacking open-world knowledge, and difficulties in comprehending users' underlying preferences and motivations. Meanwhile, large language models (LLM) have shown impressive general intelligence and human-like capabilities, which mainly stem from their extensive open-world knowledge, reasoning ability, as well as their comprehension of human culture and society. Consequently, the emergence of LLM is inspiring the design of recommender systems and pointing out a promising research direction, i.e., whether we can incorporate LLM and benefit from their knowledge and capabilities to compensate for the limitations of CRM. In this paper, we conduct a comprehensive survey on this research direction from the perspective of the whole pipeline in real-world recommender systems. Specifically, we summarize existing works from two orthogonal aspects: where and how to adapt LLM to RS. For the WHERE question, we discuss the roles that LLM could play in different stages of the recommendation pipeline, i.e., feature engineering, feature encoder, scoring/ranking function, user interaction, and pipeline controller. For the HOW question, we investigate the training and inference strategies, resulting in two fine-grained taxonomy criteria, i.e., whether to tune LLM or not, and whether to involve conventional recommendation models for inference. Then, we highlight key challenges in adapting LLM to RS from three aspects, i.e., efficiency, effectiveness, and ethics. Finally, we summarize the survey and discuss the future prospects. We actively maintain a GitHub repository for papers and other related resources: https://github.com/CHIANGEL/Awesome-LLM-for-RecSys/.
Related papers
- A Survey on RAG Meeting LLMs: Towards Retrieval-Augmented Large Language Models [71.25225058845324]
Large Language Models (LLMs) have demonstrated revolutionary abilities in language understanding and generation.
Retrieval-Augmented Generation (RAG) can offer reliable and up-to-date external knowledge.
RA-LLMs have emerged to harness external and authoritative knowledge bases, rather than relying on the model's internal knowledge.
arXiv Detail & Related papers (2024-05-10T02:48:45Z) - Reinforcement Learning Problem Solving with Large Language Models [0.0]
Large Language Models (LLMs) have an extensive amount of world knowledge, and this has enabled their application in various domains to improve the performance of Natural Language Processing (NLP) tasks.
This has also facilitated a more accessible paradigm of conversation-based interactions between humans and AI systems to solve intended problems.
We show the practicality of our approach through two detailed case studies for "Research Scientist" and "Legal Matter Intake"
arXiv Detail & Related papers (2024-04-29T12:16:08Z) - Emerging Synergies Between Large Language Models and Machine Learning in
Ecommerce Recommendations [19.405233437533713]
Large language models (LLMs) have superior capabilities in basic tasks of language understanding and generation.
We introduce a representative approach to learning user and item representations using LLM as a feature encoder.
We then reviewed the latest advances in LLMs techniques for collaborative filtering enhanced recommendation systems.
arXiv Detail & Related papers (2024-03-05T08:31:00Z) - How Can LLM Guide RL? A Value-Based Approach [68.55316627400683]
Reinforcement learning (RL) has become the de facto standard practice for sequential decision-making problems by improving future acting policies with feedback.
Recent developments in large language models (LLMs) have showcased impressive capabilities in language understanding and generation, yet they fall short in exploration and self-improvement capabilities.
We develop an algorithm named LINVIT that incorporates LLM guidance as a regularization factor in value-based RL, leading to significant reductions in the amount of data needed for learning.
arXiv Detail & Related papers (2024-02-25T20:07:13Z) - Recommender Systems in the Era of Large Language Models (LLMs) [62.0129013439038]
Large Language Models (LLMs) have revolutionized the fields of Natural Language Processing (NLP) and Artificial Intelligence (AI)
We conduct a comprehensive review of LLM-empowered recommender systems from various aspects including Pre-training, Fine-tuning, and Prompting.
arXiv Detail & Related papers (2023-07-05T06:03:40Z) - A Survey on Large Language Models for Recommendation [77.91673633328148]
Large Language Models (LLMs) have emerged as powerful tools in the field of Natural Language Processing (NLP)
This survey presents a taxonomy that categorizes these models into two major paradigms, respectively Discriminative LLM for Recommendation (DLLM4Rec) and Generative LLM for Recommendation (GLLM4Rec)
arXiv Detail & Related papers (2023-05-31T13:51:26Z) - Search-in-the-Chain: Interactively Enhancing Large Language Models with
Search for Knowledge-intensive Tasks [121.74957524305283]
This paper proposes a novel framework named textbfSearch-in-the-Chain (SearChain) for the interaction between Information Retrieval (IR) and Large Language Model (LLM)
Experiments show that SearChain outperforms state-of-the-art baselines on complex knowledge-intensive tasks.
arXiv Detail & Related papers (2023-04-28T10:15:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.