SNeL: A Structured Neuro-Symbolic Language for Entity-Based Multimodal
Scene Understanding
- URL: http://arxiv.org/abs/2306.06036v1
- Date: Fri, 9 Jun 2023 17:01:51 GMT
- Title: SNeL: A Structured Neuro-Symbolic Language for Entity-Based Multimodal
Scene Understanding
- Authors: Silvan Ferreira, Allan Martins, Ivanovitch Silva
- Abstract summary: We introduce SNeL (Structured Neuro-symbolic Language), a versatile query language designed to facilitate nuanced interactions with neural networks processing multimodal data.
SNeL's expressive interface enables the construction of intricate queries, supporting logical and arithmetic operators, comparators, nesting, and more.
Our evaluations demonstrate SNeL's potential to reshape the way we interact with complex neural networks.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the evolving landscape of artificial intelligence, multimodal and
Neuro-Symbolic paradigms stand at the forefront, with a particular emphasis on
the identification and interaction with entities and their relations across
diverse modalities. Addressing the need for complex querying and interaction in
this context, we introduce SNeL (Structured Neuro-symbolic Language), a
versatile query language designed to facilitate nuanced interactions with
neural networks processing multimodal data. SNeL's expressive interface enables
the construction of intricate queries, supporting logical and arithmetic
operators, comparators, nesting, and more. This allows users to target specific
entities, specify their properties, and limit results, thereby efficiently
extracting information from a scene. By aligning high-level symbolic reasoning
with low-level neural processing, SNeL effectively bridges the Neuro-Symbolic
divide. The language's versatility extends to a variety of data types,
including images, audio, and text, making it a powerful tool for multimodal
scene understanding. Our evaluations demonstrate SNeL's potential to reshape
the way we interact with complex neural networks, underscoring its efficacy in
driving targeted information extraction and facilitating a deeper understanding
of the rich semantics encapsulated in multimodal AI models.
Related papers
- Neuro-Vision to Language: Enhancing Brain Recording-based Visual Reconstruction and Language Interaction [8.63068449082585]
Decoding non-invasive brain recordings is pivotal for advancing our understanding of human cognition.
Our framework integrates 3D brain structures with visual semantics using a Vision Transformer 3D.
We have enhanced the fMRI dataset with diverse fMRI-image-related textual data to support multimodal large model development.
arXiv Detail & Related papers (2024-04-30T10:41:23Z) - Engineering A Large Language Model From Scratch [0.0]
Atinuke is a Transformer-based neural network that optimises performance across various language tasks.
It can emulate human-like language by extracting features and learning complex mappings.
System achieves state-of-the-art results on natural language tasks whilst remaining interpretable and robust.
arXiv Detail & Related papers (2024-01-30T04:29:48Z) - Interpretable Multimodal Misinformation Detection with Logic Reasoning [40.851213962307206]
We propose a novel logic-based neural model for multimodal misinformation detection.
We parameterize symbolic logical elements using neural representations, which facilitate the automatic generation and evaluation of meaningful logic clauses.
Results on three public datasets demonstrate the feasibility and versatility of our model.
arXiv Detail & Related papers (2023-05-10T08:16:36Z) - Synergistic information supports modality integration and flexible
learning in neural networks solving multiple tasks [107.8565143456161]
We investigate the information processing strategies adopted by simple artificial neural networks performing a variety of cognitive tasks.
Results show that synergy increases as neural networks learn multiple diverse tasks.
randomly turning off neurons during training through dropout increases network redundancy, corresponding to an increase in robustness.
arXiv Detail & Related papers (2022-10-06T15:36:27Z) - Join-Chain Network: A Logical Reasoning View of the Multi-head Attention
in Transformer [59.73454783958702]
We propose a symbolic reasoning architecture that chains many join operators together to model output logical expressions.
In particular, we demonstrate that such an ensemble of join-chains can express a broad subset of ''tree-structured'' first-order logical expressions, named FOET.
We find that the widely used multi-head self-attention module in transformer can be understood as a special neural operator that implements the union bound of the join operator in probabilistic predicate space.
arXiv Detail & Related papers (2022-10-06T07:39:58Z) - Natural Language Descriptions of Deep Visual Features [50.270035018478666]
We introduce a procedure that automatically labels neurons with open-ended, compositional, natural language descriptions.
We use MILAN for analysis, characterizing the distribution and importance of neurons selective for attribute, category, and relational information in vision models.
We also use MILAN for auditing, surfacing neurons sensitive to protected categories like race and gender in models trained on datasets intended to obscure these features.
arXiv Detail & Related papers (2022-01-26T18:48:02Z) - Emergence of Machine Language: Towards Symbolic Intelligence with Neural
Networks [73.94290462239061]
We propose to combine symbolism and connectionism principles by using neural networks to derive a discrete representation.
By designing an interactive environment and task, we demonstrated that machines could generate a spontaneous, flexible, and semantic language.
arXiv Detail & Related papers (2022-01-14T14:54:58Z) - Discrete-Valued Neural Communication [85.3675647398994]
We show that restricting the transmitted information among components to discrete representations is a beneficial bottleneck.
Even though individuals have different understandings of what a "cat" is based on their specific experiences, the shared discrete token makes it possible for communication among individuals to be unimpeded by individual differences in internal representation.
We extend the quantization mechanism from the Vector-Quantized Variational Autoencoder to multi-headed discretization with shared codebooks and use it for discrete-valued neural communication.
arXiv Detail & Related papers (2021-07-06T03:09:25Z) - Neurosymbolic AI for Situated Language Understanding [13.249453757295083]
We argue that computational situated grounding provides a solution to some of these learning challenges.
Our model reincorporates some ideas of classic AI into a framework of neurosymbolic intelligence.
We discuss how situated grounding provides diverse data and multiple levels of modeling for a variety of AI learning challenges.
arXiv Detail & Related papers (2020-12-05T05:03:28Z) - Neuro-Symbolic Representations for Video Captioning: A Case for
Leveraging Inductive Biases for Vision and Language [148.0843278195794]
We propose a new model architecture for learning multi-modal neuro-symbolic representations for video captioning.
Our approach uses a dictionary learning-based method of learning relations between videos and their paired text descriptions.
arXiv Detail & Related papers (2020-11-18T20:21:19Z) - Compositional Languages Emerge in a Neural Iterated Learning Model [27.495624644227888]
compositionality enables natural language to represent complex concepts via a structured combination of simpler ones.
We propose an effective neural iterated learning (NIL) algorithm that, when applied to interacting neural agents, facilitates the emergence of a more structured type of language.
arXiv Detail & Related papers (2020-02-04T15:19:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.