LDMRes-Net: Enabling Efficient Medical Image Segmentation on IoT and
Edge Platforms
- URL: http://arxiv.org/abs/2306.06145v2
- Date: Thu, 7 Sep 2023 12:56:49 GMT
- Title: LDMRes-Net: Enabling Efficient Medical Image Segmentation on IoT and
Edge Platforms
- Authors: Shahzaib Iqbal, Tariq M. Khan, Syed S. Naqvi, Muhammad Usman, and
Imran Razzak
- Abstract summary: We propose a lightweight dual-multiscale residual block-based computational neural network tailored for medical image segmentation on IoT and edge platforms.
LDMRes-Net overcomes limitations with its remarkably low number of learnable parameters (0.072M), making it highly suitable for resource-constrained devices.
- Score: 9.626726110488386
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this study, we propose LDMRes-Net, a lightweight dual-multiscale residual
block-based computational neural network tailored for medical image
segmentation on IoT and edge platforms. Conventional U-Net-based models face
challenges in meeting the speed and efficiency demands of real-time clinical
applications, such as disease monitoring, radiation therapy, and image-guided
surgery. LDMRes-Net overcomes these limitations with its remarkably low number
of learnable parameters (0.072M), making it highly suitable for
resource-constrained devices. The model's key innovation lies in its dual
multi-residual block architecture, which enables the extraction of refined
features on multiple scales, enhancing overall segmentation performance. To
further optimize efficiency, the number of filters is carefully selected to
prevent overlap, reduce training time, and improve computational efficiency.
The study includes comprehensive evaluations, focusing on segmentation of the
retinal image of vessels and hard exudates crucial for the diagnosis and
treatment of ophthalmology. The results demonstrate the robustness,
generalizability, and high segmentation accuracy of LDMRes-Net, positioning it
as an efficient tool for accurate and rapid medical image segmentation in
diverse clinical applications, particularly on IoT and edge platforms. Such
advances hold significant promise for improving healthcare outcomes and
enabling real-time medical image analysis in resource-limited settings.
Related papers
- MAPUNetR: A Hybrid Vision Transformer and U-Net Architecture for Efficient and Interpretable Medical Image Segmentation [0.0]
We introduce MAPUNetR, a novel architecture that synergizes the strengths of transformer models with the proven U-Net framework for medical image segmentation.
Our model addresses the resolution preservation challenge and incorporates attention maps highlighting segmented regions, increasing accuracy and interpretability.
Our experiments show that the model maintains stable performance and potential as a powerful tool for medical image segmentation in clinical practice.
arXiv Detail & Related papers (2024-10-29T16:52:57Z) - Med-TTT: Vision Test-Time Training model for Medical Image Segmentation [5.318153305245246]
We propose Med-TTT, a visual backbone network integrated with Test-Time Training layers.
The model achieves leading performance in terms of accuracy, sensitivity, and Dice coefficient.
arXiv Detail & Related papers (2024-10-03T14:29:46Z) - Augmentation is AUtO-Net: Augmentation-Driven Contrastive Multiview
Learning for Medical Image Segmentation [3.1002416427168304]
This thesis focuses on retinal blood vessel segmentation tasks.
It provides an extensive literature review of deep learning-based medical image segmentation approaches.
It proposes a novel efficient, simple multiview learning framework.
arXiv Detail & Related papers (2023-11-02T06:31:08Z) - LMBiS-Net: A Lightweight Multipath Bidirectional Skip Connection based
CNN for Retinal Blood Vessel Segmentation [0.0]
Blinding eye diseases are often correlated with altered retinal morphology, which can be clinically identified by segmenting retinal structures in fundus images.
Deep learning has shown promise in medical image segmentation, but its reliance on repeated convolution and pooling operations can hinder the representation of edge information.
We propose a lightweight pixel-level CNN named LMBiS-Net for the segmentation of retinal vessels with an exceptionally low number of learnable parameters.
arXiv Detail & Related papers (2023-09-10T09:03:53Z) - LVM-Med: Learning Large-Scale Self-Supervised Vision Models for Medical
Imaging via Second-order Graph Matching [59.01894976615714]
We introduce LVM-Med, the first family of deep networks trained on large-scale medical datasets.
We have collected approximately 1.3 million medical images from 55 publicly available datasets.
LVM-Med empirically outperforms a number of state-of-the-art supervised, self-supervised, and foundation models.
arXiv Detail & Related papers (2023-06-20T22:21:34Z) - MKIS-Net: A Light-Weight Multi-Kernel Network for Medical Image
Segmentation [7.587725015524997]
We propose a multi- kernel image segmentation net (MKIS-Net)
MKIS-Net is a light-weight architecture with a small number of trainable parameters.
We demonstrate the efficacy of MKIS-Net on several tasks including segmentation of retinal vessels, skin lesion segmentation, and chest X-ray segmentation.
arXiv Detail & Related papers (2022-10-15T02:46:28Z) - Robust and Efficient Medical Imaging with Self-Supervision [80.62711706785834]
We present REMEDIS, a unified representation learning strategy to improve robustness and data-efficiency of medical imaging AI.
We study a diverse range of medical imaging tasks and simulate three realistic application scenarios using retrospective data.
arXiv Detail & Related papers (2022-05-19T17:34:18Z) - InDuDoNet+: A Model-Driven Interpretable Dual Domain Network for Metal
Artifact Reduction in CT Images [53.4351366246531]
We construct a novel interpretable dual domain network, termed InDuDoNet+, into which CT imaging process is finely embedded.
We analyze the CT values among different tissues, and merge the prior observations into a prior network for our InDuDoNet+, which significantly improve its generalization performance.
arXiv Detail & Related papers (2021-12-23T15:52:37Z) - Incremental Cross-view Mutual Distillation for Self-supervised Medical
CT Synthesis [88.39466012709205]
This paper builds a novel medical slice to increase the between-slice resolution.
Considering that the ground-truth intermediate medical slices are always absent in clinical practice, we introduce the incremental cross-view mutual distillation strategy.
Our method outperforms state-of-the-art algorithms by clear margins.
arXiv Detail & Related papers (2021-12-20T03:38:37Z) - Rethinking the Extraction and Interaction of Multi-Scale Features for
Vessel Segmentation [53.187152856583396]
We propose a novel deep learning model called PC-Net to segment retinal vessels and major arteries in 2D fundus image and 3D computed tomography angiography (CTA) scans.
In PC-Net, the pyramid squeeze-and-excitation (PSE) module introduces spatial information to each convolutional block, boosting its ability to extract more effective multi-scale features.
arXiv Detail & Related papers (2020-10-09T08:22:54Z) - Searching for Efficient Architecture for Instrument Segmentation in
Robotic Surgery [58.63306322525082]
Most applications rely on accurate real-time segmentation of high-resolution surgical images.
We design a light-weight and highly-efficient deep residual architecture which is tuned to perform real-time inference of high-resolution images.
arXiv Detail & Related papers (2020-07-08T21:38:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.