Improving Non-autoregressive Translation Quality with Pretrained Language Model, Embedding Distillation and Upsampling Strategy for CTC
- URL: http://arxiv.org/abs/2306.06345v3
- Date: Mon, 14 Oct 2024 05:50:13 GMT
- Title: Improving Non-autoregressive Translation Quality with Pretrained Language Model, Embedding Distillation and Upsampling Strategy for CTC
- Authors: Shen-sian Syu, Juncheng Xie, Hung-yi Lee,
- Abstract summary: This paper introduces a series of innovative techniques to enhance the translation quality of Non-Autoregressive Translation (NAT) models.
We propose fine-tuning Pretrained Multilingual Language Models (PMLMs) with the CTC loss to train NAT models effectively.
Our model exhibits a remarkable speed improvement of 16.35 times compared to the autoregressive model.
- Score: 51.34222224728979
- License:
- Abstract: Non-autoregressive approaches aim to improve the inference speed of translation models, particularly those that generate output in a one-pass forward manner. However, these approaches often suffer from a significant drop in translation quality compared to autoregressive models. This paper introduces a series of innovative techniques to enhance the translation quality of Non-Autoregressive Translation (NAT) models while maintaining a substantial acceleration in inference speed. We propose fine-tuning Pretrained Multilingual Language Models (PMLMs) with the CTC loss to train NAT models effectively. Furthermore, we adopt the MASK insertion scheme for up-sampling instead of token duplication, and we present an embedding distillation method to further enhance performance. In our experiments, our model outperforms the baseline autoregressive model (Transformer \textit{base}) on multiple datasets, including WMT'14 DE$\leftrightarrow$EN, WMT'16 RO$\leftrightarrow$EN, and IWSLT'14 DE$\leftrightarrow$EN. Notably, our model achieves better performance than the baseline autoregressive model on the IWSLT'14 En$\leftrightarrow$De and WMT'16 En$\leftrightarrow$Ro datasets, even without using distillation data during training. It is worth highlighting that on the IWSLT'14 DE$\rightarrow$EN dataset, our model achieves an impressive BLEU score of 39.59, setting a new state-of-the-art performance. Additionally, our model exhibits a remarkable speed improvement of 16.35 times compared to the autoregressive model.
Related papers
- Contrastive Preference Optimization: Pushing the Boundaries of LLM Performance in Machine Translation [50.00235162432848]
We train ALMA models with only 22K parallel sentences and 12M parameters.
The resulting model, called ALMA-R, can match or exceed the performance of the WMT competition winners and GPT-4.
arXiv Detail & Related papers (2024-01-16T15:04:51Z) - Candidate Soups: Fusing Candidate Results Improves Translation Quality
for Non-Autoregressive Translation [15.332496335303189]
Non-autoregressive translation (NAT) model achieves a much faster inference speed than the autoregressive translation (AT) model.
Existing NAT methods only focus on improving the NAT model's performance but do not fully utilize it.
We propose a simple but effective method called "Candidate Soups," which can obtain high-quality translations.
arXiv Detail & Related papers (2023-01-27T02:39:42Z) - Self-Distillation Mixup Training for Non-autoregressive Neural Machine
Translation [13.527174969073073]
Non-autoregressive (NAT) models predict outputs in parallel, achieving substantial improvements in generation speed compared to autoregressive (AT) models.
While performing worse on raw data, most NAT models are trained as student models on distilled data generated by AT teacher models.
An effective training strategy is Self-Distillation Mixup (SDM) Training, which pre-trains a model on raw data, generates distilled data by the pre-trained model itself and finally re-trains a model on the combination of raw data and distilled data.
arXiv Detail & Related papers (2021-12-22T03:06:27Z) - Improving Non-autoregressive Generation with Mixup Training [51.61038444990301]
We present a non-autoregressive generation model based on pre-trained transformer models.
We propose a simple and effective iterative training method called MIx Source and pseudo Target.
Our experiments on three generation benchmarks including question generation, summarization and paraphrase generation, show that the proposed framework achieves the new state-of-the-art results.
arXiv Detail & Related papers (2021-10-21T13:04:21Z) - The USYD-JD Speech Translation System for IWSLT 2021 [85.64797317290349]
This paper describes the University of Sydney& JD's joint submission of the IWSLT 2021 low resource speech translation task.
We trained our models with the officially provided ASR and MT datasets.
To achieve better translation performance, we explored the most recent effective strategies, including back translation, knowledge distillation, multi-feature reranking and transductive finetuning.
arXiv Detail & Related papers (2021-07-24T09:53:34Z) - Understanding and Improving Lexical Choice in Non-Autoregressive
Translation [98.11249019844281]
We propose to expose the raw data to NAT models to restore the useful information of low-frequency words.
Our approach pushes the SOTA NAT performance on the WMT14 English-German and WMT16 Romanian-English datasets up to 27.8 and 33.8 BLEU points, respectively.
arXiv Detail & Related papers (2020-12-29T03:18:50Z) - Pronoun-Targeted Fine-tuning for NMT with Hybrid Losses [6.596002578395152]
We introduce a class of conditional generative-discriminative hybrid losses that we use to fine-tune a trained machine translation model.
We improve the model performance of both a sentence-level and a contextual model without using any additional data.
Our sentence-level model shows a 0.5 BLEU improvement on both the WMT14 and the IWSLT13 De-En testsets.
Our contextual model achieves the best results, improving from 31.81 to 32 BLEU on WMT14 De-En testset, and from 32.10 to 33.13 on the IWSLT13 De-En
arXiv Detail & Related papers (2020-10-15T10:11:40Z) - LAVA NAT: A Non-Autoregressive Translation Model with Look-Around
Decoding and Vocabulary Attention [54.18121922040521]
Non-autoregressive translation (NAT) models generate multiple tokens in one forward pass.
These NAT models often suffer from the multimodality problem, generating duplicated tokens or missing tokens.
We propose two novel methods to address this issue, the Look-Around (LA) strategy and the Vocabulary Attention (VA) mechanism.
arXiv Detail & Related papers (2020-02-08T04:11:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.