Graph Agent Network: Empowering Nodes with Inference Capabilities for Adversarial Resilience
- URL: http://arxiv.org/abs/2306.06909v4
- Date: Tue, 12 Nov 2024 07:11:29 GMT
- Title: Graph Agent Network: Empowering Nodes with Inference Capabilities for Adversarial Resilience
- Authors: Ao Liu, Wenshan Li, Tao Li, Beibei Li, Guangquan Xu, Pan Zhou, Wengang Ma, Hanyuan Huang,
- Abstract summary: We propose the Graph Agent Network (GAgN) to address the vulnerabilities of graph neural networks (GNNs)
GAgN is a graph-structured agent network in which each node is designed as an 1-hop-view agent.
Agents' limited view prevents malicious messages from propagating globally in GAgN, thereby resisting global-optimization-based secondary attacks.
- Score: 50.460555688927826
- License:
- Abstract: End-to-end training with global optimization have popularized graph neural networks (GNNs) for node classification, yet inadvertently introduced vulnerabilities to adversarial edge-perturbing attacks. Adversaries can exploit the inherent opened interfaces of GNNs' input and output, perturbing critical edges and thus manipulating the classification results. Current defenses, due to their persistent utilization of global-optimization-based end-to-end training schemes, inherently encapsulate the vulnerabilities of GNNs. This is specifically evidenced in their inability to defend against targeted secondary attacks. In this paper, we propose the Graph Agent Network (GAgN) to address the aforementioned vulnerabilities of GNNs. GAgN is a graph-structured agent network in which each node is designed as an 1-hop-view agent. Through the decentralized interactions between agents, they can learn to infer global perceptions to perform tasks including inferring embeddings, degrees and neighbor relationships for given nodes. This empowers nodes to filtering adversarial edges while carrying out classification tasks. Furthermore, agents' limited view prevents malicious messages from propagating globally in GAgN, thereby resisting global-optimization-based secondary attacks. We prove that single-hidden-layer multilayer perceptrons (MLPs) are theoretically sufficient to achieve these functionalities. Experimental results show that GAgN effectively implements all its intended capabilities and, compared to state-of-the-art defenses, achieves optimal classification accuracy on the perturbed datasets.
Related papers
- HGAttack: Transferable Heterogeneous Graph Adversarial Attack [63.35560741500611]
Heterogeneous Graph Neural Networks (HGNNs) are increasingly recognized for their performance in areas like the web and e-commerce.
This paper introduces HGAttack, the first dedicated gray box evasion attack method for heterogeneous graphs.
arXiv Detail & Related papers (2024-01-18T12:47:13Z) - Resisting Graph Adversarial Attack via Cooperative Homophilous
Augmentation [60.50994154879244]
Recent studies show that Graph Neural Networks are vulnerable and easily fooled by small perturbations.
In this work, we focus on the emerging but critical attack, namely, Graph Injection Attack.
We propose a general defense framework CHAGNN against GIA through cooperative homophilous augmentation of graph data and model.
arXiv Detail & Related papers (2022-11-15T11:44:31Z) - GANI: Global Attacks on Graph Neural Networks via Imperceptible Node
Injections [20.18085461668842]
Graph neural networks (GNNs) have found successful applications in various graph-related tasks.
Recent studies have shown that many GNNs are vulnerable to adversarial attacks.
In this paper, we focus on a realistic attack operation via injecting fake nodes.
arXiv Detail & Related papers (2022-10-23T02:12:26Z) - Label-Only Membership Inference Attack against Node-Level Graph Neural
Networks [30.137860266059004]
Graph Neural Networks (GNNs) are vulnerable to Membership Inference Attacks (MIAs)
We propose a label-only MIA against GNNs for node classification with the help of GNNs' flexible prediction mechanism.
Our attacking method achieves around 60% accuracy, precision, and Area Under the Curve (AUC) for most datasets and GNN models.
arXiv Detail & Related papers (2022-07-27T19:46:26Z) - GUARD: Graph Universal Adversarial Defense [54.81496179947696]
We present a simple yet effective method, named Graph Universal Adversarial Defense (GUARD)
GUARD protects each individual node from attacks with a universal defensive patch, which is generated once and can be applied to any node in a graph.
GUARD significantly improves robustness for several established GCNs against multiple adversarial attacks and outperforms state-of-the-art defense methods by large margins.
arXiv Detail & Related papers (2022-04-20T22:18:12Z) - Uncertainty-Matching Graph Neural Networks to Defend Against Poisoning
Attacks [43.60973654460398]
Graph Neural Networks (GNNs) are generalizations of neural networks to graph-structured data.
GNNs are vulnerable to adversarial attacks, i.e., a small perturbation to the structure can lead to a non-trivial performance degradation.
We propose Uncertainty Matching GNN (UM-GNN), that is aimed at improving the robustness of GNN models.
arXiv Detail & Related papers (2020-09-30T05:29:42Z) - Graph Backdoor [53.70971502299977]
We present GTA, the first backdoor attack on graph neural networks (GNNs)
GTA departs in significant ways: it defines triggers as specific subgraphs, including both topological structures and descriptive features.
It can be instantiated for both transductive (e.g., node classification) and inductive (e.g., graph classification) tasks.
arXiv Detail & Related papers (2020-06-21T19:45:30Z) - GNNGuard: Defending Graph Neural Networks against Adversarial Attacks [16.941548115261433]
We develop GNNGuard, an algorithm to defend against a variety of training-time attacks that perturb the discrete graph structure.
GNNGuard learns how to best assign higher weights to edges connecting similar nodes while pruning edges between unrelated nodes.
Experiments show that GNNGuard outperforms existing defense approaches by 15.3% on average.
arXiv Detail & Related papers (2020-06-15T06:07:46Z) - AN-GCN: An Anonymous Graph Convolutional Network Defense Against
Edge-Perturbing Attack [53.06334363586119]
Recent studies have revealed the vulnerability of graph convolutional networks (GCNs) to edge-perturbing attacks.
We first generalize the formulation of edge-perturbing attacks and strictly prove the vulnerability of GCNs to such attacks in node classification tasks.
Following this, an anonymous graph convolutional network, named AN-GCN, is proposed to counter edge-perturbing attacks.
arXiv Detail & Related papers (2020-05-06T08:15:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.