Semantic-Based Neural Network Repair
- URL: http://arxiv.org/abs/2306.07995v1
- Date: Mon, 12 Jun 2023 16:18:32 GMT
- Title: Semantic-Based Neural Network Repair
- Authors: Richard Schumi, Jun Sun
- Abstract summary: We propose an approach to automatically repair erroneous neural networks.
Our approach is based on an executable semantics of deep learning layers.
We evaluate our approach for two usage scenarios, i.e., repairing automatically generated neural networks and manually written ones suffering from common model bugs.
- Score: 4.092001692194709
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Recently, neural networks have spread into numerous fields including many
safety-critical systems. Neural networks are built (and trained) by programming
in frameworks such as TensorFlow and PyTorch. Developers apply a rich set of
pre-defined layers to manually program neural networks or to automatically
generate them (e.g., through AutoML). Composing neural networks with different
layers is error-prone due to the non-trivial constraints that must be satisfied
in order to use those layers. In this work, we propose an approach to
automatically repair erroneous neural networks. The challenge is in identifying
a minimal modification to the network so that it becomes valid. Modifying a
layer might have cascading effects on subsequent layers and thus our approach
must search recursively to identify a "globally" minimal modification. Our
approach is based on an executable semantics of deep learning layers and
focuses on four kinds of errors which are common in practice. We evaluate our
approach for two usage scenarios, i.e., repairing automatically generated
neural networks and manually written ones suffering from common model bugs. The
results show that we are able to repair 100% of a set of randomly generated
neural networks (which are produced with an existing AI framework testing
approach) effectively and efficiently (with an average repair time of 21.08s)
and 93.75% of a collection of real neural network bugs (with an average time of
3min 40s).
Related papers
- Verified Neural Compressed Sensing [58.98637799432153]
We develop the first (to the best of our knowledge) provably correct neural networks for a precise computational task.
We show that for modest problem dimensions (up to 50), we can train neural networks that provably recover a sparse vector from linear and binarized linear measurements.
We show that the complexity of the network can be adapted to the problem difficulty and solve problems where traditional compressed sensing methods are not known to provably work.
arXiv Detail & Related papers (2024-05-07T12:20:12Z) - Message Passing Variational Autoregressive Network for Solving Intractable Ising Models [6.261096199903392]
Many deep neural networks have been used to solve Ising models, including autoregressive neural networks, convolutional neural networks, recurrent neural networks, and graph neural networks.
Here we propose a variational autoregressive architecture with a message passing mechanism, which can effectively utilize the interactions between spin variables.
The new network trained under an annealing framework outperforms existing methods in solving several prototypical Ising spin Hamiltonians, especially for larger spin systems at low temperatures.
arXiv Detail & Related papers (2024-04-09T11:27:07Z) - Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
We propose to represent neural networks as computational graphs of parameters.
Our approach enables a single model to encode neural computational graphs with diverse architectures.
We showcase the effectiveness of our method on a wide range of tasks, including classification and editing of implicit neural representations.
arXiv Detail & Related papers (2024-03-18T18:01:01Z) - Benign Overfitting for Two-layer ReLU Convolutional Neural Networks [60.19739010031304]
We establish algorithm-dependent risk bounds for learning two-layer ReLU convolutional neural networks with label-flipping noise.
We show that, under mild conditions, the neural network trained by gradient descent can achieve near-zero training loss and Bayes optimal test risk.
arXiv Detail & Related papers (2023-03-07T18:59:38Z) - Multi-Grade Deep Learning [3.0069322256338906]
Current deep learning model is of a single-grade neural network.
We propose a multi-grade learning model that enables us to learn deep neural network much more effectively and efficiently.
arXiv Detail & Related papers (2023-02-01T00:09:56Z) - Improving the Trainability of Deep Neural Networks through Layerwise
Batch-Entropy Regularization [1.3999481573773072]
We introduce and evaluate the batch-entropy which quantifies the flow of information through each layer of a neural network.
We show that we can train a "vanilla" fully connected network and convolutional neural network with 500 layers by simply adding the batch-entropy regularization term to the loss function.
arXiv Detail & Related papers (2022-08-01T20:31:58Z) - Neural networks with linear threshold activations: structure and
algorithms [1.795561427808824]
We show that 2 hidden layers are necessary and sufficient to represent any function representable in the class.
We also give precise bounds on the sizes of the neural networks required to represent any function in the class.
We propose a new class of neural networks that we call shortcut linear threshold networks.
arXiv Detail & Related papers (2021-11-15T22:33:52Z) - Incremental Deep Neural Network Learning using Classification Confidence
Thresholding [4.061135251278187]
Most modern neural networks for classification fail to take into account the concept of the unknown.
This paper proposes the Classification Confidence Threshold approach to prime neural networks for incremental learning.
arXiv Detail & Related papers (2021-06-21T22:46:28Z) - Firefly Neural Architecture Descent: a General Approach for Growing
Neural Networks [50.684661759340145]
Firefly neural architecture descent is a general framework for progressively and dynamically growing neural networks.
We show that firefly descent can flexibly grow networks both wider and deeper, and can be applied to learn accurate but resource-efficient neural architectures.
In particular, it learns networks that are smaller in size but have higher average accuracy than those learned by the state-of-the-art methods.
arXiv Detail & Related papers (2021-02-17T04:47:18Z) - Local Critic Training for Model-Parallel Learning of Deep Neural
Networks [94.69202357137452]
We propose a novel model-parallel learning method, called local critic training.
We show that the proposed approach successfully decouples the update process of the layer groups for both convolutional neural networks (CNNs) and recurrent neural networks (RNNs)
We also show that trained networks by the proposed method can be used for structural optimization.
arXiv Detail & Related papers (2021-02-03T09:30:45Z) - Network Adjustment: Channel Search Guided by FLOPs Utilization Ratio [101.84651388520584]
This paper presents a new framework named network adjustment, which considers network accuracy as a function of FLOPs.
Experiments on standard image classification datasets and a wide range of base networks demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2020-04-06T15:51:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.