Sociodemographic Bias in Language Models: A Survey and Forward Path
- URL: http://arxiv.org/abs/2306.08158v5
- Date: Tue, 13 Aug 2024 19:51:48 GMT
- Title: Sociodemographic Bias in Language Models: A Survey and Forward Path
- Authors: Vipul Gupta, Pranav Narayanan Venkit, Shomir Wilson, Rebecca J. Passonneau,
- Abstract summary: Sociodemographic bias in language models (LMs) has the potential for harm when deployed in real-world settings.
This paper presents a comprehensive survey of the past decade of research on sociodemographic bias in LMs.
- Score: 7.337228289111424
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Sociodemographic bias in language models (LMs) has the potential for harm when deployed in real-world settings. This paper presents a comprehensive survey of the past decade of research on sociodemographic bias in LMs, organized into a typology that facilitates examining the different aims: types of bias, quantifying bias, and debiasing techniques. We track the evolution of the latter two questions, then identify current trends and their limitations, as well as emerging techniques. To guide future research towards more effective and reliable solutions, and to help authors situate their work within this broad landscape, we conclude with a checklist of open questions.
Related papers
- Bias in Large Language Models: Origin, Evaluation, and Mitigation [4.606140332500086]
Large Language Models (LLMs) have revolutionized natural language processing, but their susceptibility to biases poses significant challenges.
This comprehensive review examines the landscape of bias in LLMs, from its origins to current mitigation strategies.
Ethical and legal implications of biased LLMs are discussed, emphasizing potential harms in real-world applications such as healthcare and criminal justice.
arXiv Detail & Related papers (2024-11-16T23:54:53Z) - A Comprehensive Survey of Bias in LLMs: Current Landscape and Future Directions [0.0]
Large Language Models (LLMs) have revolutionized various applications in natural language processing (NLP) by providing unprecedented text generation, translation, and comprehension capabilities.
Their widespread deployment has brought to light significant concerns regarding biases embedded within these models.
This paper presents a comprehensive survey of biases in LLMs, aiming to provide an extensive review of the types, sources, impacts, and mitigation strategies related to these biases.
arXiv Detail & Related papers (2024-09-24T19:50:38Z) - Fairness and Bias Mitigation in Computer Vision: A Survey [61.01658257223365]
Computer vision systems are increasingly being deployed in high-stakes real-world applications.
There is a dire need to ensure that they do not propagate or amplify any discriminatory tendencies in historical or human-curated data.
This paper presents a comprehensive survey on fairness that summarizes and sheds light on ongoing trends and successes in the context of computer vision.
arXiv Detail & Related papers (2024-08-05T13:44:22Z) - From Pixels to Insights: A Survey on Automatic Chart Understanding in the Era of Large Foundation Models [98.41645229835493]
Data visualization in the form of charts plays a pivotal role in data analysis, offering critical insights and aiding in informed decision-making.
Large foundation models, such as large language models, have revolutionized various natural language processing tasks.
This survey paper serves as a comprehensive resource for researchers and practitioners in the fields of natural language processing, computer vision, and data analysis.
arXiv Detail & Related papers (2024-03-18T17:57:09Z) - Leveraging Prototypical Representations for Mitigating Social Bias without Demographic Information [50.29934517930506]
DAFair is a novel approach to address social bias in language models.
We leverage prototypical demographic texts and incorporate a regularization term during the fine-tuning process to mitigate bias.
arXiv Detail & Related papers (2024-03-14T15:58:36Z) - Bias and Fairness in Large Language Models: A Survey [73.87651986156006]
We present a comprehensive survey of bias evaluation and mitigation techniques for large language models (LLMs)
We first consolidate, formalize, and expand notions of social bias and fairness in natural language processing.
We then unify the literature by proposing three intuitive, two for bias evaluation, and one for mitigation.
arXiv Detail & Related papers (2023-09-02T00:32:55Z) - This Prompt is Measuring <MASK>: Evaluating Bias Evaluation in Language
Models [12.214260053244871]
We analyse the body of work that uses prompts and templates to assess bias in language models.
We draw on a measurement modelling framework to create a taxonomy of attributes that capture what a bias test aims to measure.
Our analysis illuminates the scope of possible bias types the field is able to measure, and reveals types that are as yet under-researched.
arXiv Detail & Related papers (2023-05-22T06:28:48Z) - Fair Enough: Standardizing Evaluation and Model Selection for Fairness
Research in NLP [64.45845091719002]
Modern NLP systems exhibit a range of biases, which a growing literature on model debiasing attempts to correct.
This paper seeks to clarify the current situation and plot a course for meaningful progress in fair learning.
arXiv Detail & Related papers (2023-02-11T14:54:00Z) - Towards an Enhanced Understanding of Bias in Pre-trained Neural Language
Models: A Survey with Special Emphasis on Affective Bias [2.6304695993930594]
We present a survey to comprehend bias in large pre-trained language models, analyze the stages at which they occur, and various ways in which these biases could be quantified and mitigated.
Considering wide applicability of textual affective computing based downstream tasks in real-world systems such as business, healthcare, education, etc., we give a special emphasis on investigating bias in the context of affect (emotion) i.e., Affective Bias.
We present a summary of various bias evaluation corpora that help to aid future research and discuss challenges in the research on bias in pre-trained language models.
arXiv Detail & Related papers (2022-04-21T18:51:19Z) - Towards Controllable Biases in Language Generation [87.89632038677912]
We develop a method to induce societal biases in generated text when input prompts contain mentions of specific demographic groups.
We analyze two scenarios: 1) inducing negative biases for one demographic and positive biases for another demographic, and 2) equalizing biases between demographics.
arXiv Detail & Related papers (2020-05-01T08:25:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.