Unified model for code-switching speech recognition and language
identification based on a concatenated tokenizer
- URL: http://arxiv.org/abs/2306.08753v3
- Date: Sat, 16 Sep 2023 05:32:12 GMT
- Title: Unified model for code-switching speech recognition and language
identification based on a concatenated tokenizer
- Authors: Kunal Dhawan, Dima Rekesh, Boris Ginsburg
- Abstract summary: Code-Switching (CS) multilingual Automatic Speech Recognition (ASR) models can transcribe speech containing two or more alternating languages during a conversation.
This paper proposes a new method for creating code-switching ASR datasets from purely monolingual data sources.
A novel Concatenated Tokenizer enables ASR models to generate language ID for each emitted text token while reusing existing monolingual tokenizers.
- Score: 17.700515986659063
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Code-Switching (CS) multilingual Automatic Speech Recognition (ASR) models
can transcribe speech containing two or more alternating languages during a
conversation. This paper proposes (1) a new method for creating code-switching
ASR datasets from purely monolingual data sources, and (2) a novel Concatenated
Tokenizer that enables ASR models to generate language ID for each emitted text
token while reusing existing monolingual tokenizers. The efficacy of these
approaches for building CS ASR models is demonstrated for two language pairs,
English-Hindi and English-Spanish, where we achieve new state-of-the-art
results on the Miami Bangor CS evaluation corpus. In addition to competitive
ASR performance, the proposed Concatenated Tokenizer models are highly
effective for spoken language identification, achieving 98%+ accuracy on the
out-of-distribution FLEURS dataset.
Related papers
- Leveraging Language ID to Calculate Intermediate CTC Loss for Enhanced
Code-Switching Speech Recognition [5.3545957730615905]
We introduce language identification information into the middle layer of the ASR model's encoder.
We aim to generate acoustic features that imply language distinctions in a more implicit way, reducing the model's confusion when dealing with language switching.
arXiv Detail & Related papers (2023-12-15T07:46:35Z) - Speech collage: code-switched audio generation by collaging monolingual
corpora [50.356820349870986]
Speech Collage is a method that synthesizes CS data from monolingual corpora by splicing audio segments.
We investigate the impact of generated data on speech recognition in two scenarios.
arXiv Detail & Related papers (2023-09-27T14:17:53Z) - From English to More Languages: Parameter-Efficient Model Reprogramming
for Cross-Lingual Speech Recognition [50.93943755401025]
We propose a new parameter-efficient learning framework based on neural model reprogramming for cross-lingual speech recognition.
We design different auxiliary neural architectures focusing on learnable pre-trained feature enhancement.
Our methods outperform existing ASR tuning architectures and their extension with self-supervised losses.
arXiv Detail & Related papers (2023-01-19T02:37:56Z) - LAMASSU: Streaming Language-Agnostic Multilingual Speech Recognition and
Translation Using Neural Transducers [71.76680102779765]
Automatic speech recognition (ASR) and speech translation (ST) can both use neural transducers as the model structure.
We propose LAMASSU, a streaming language-agnostic multilingual speech recognition and translation model using neural transducers.
arXiv Detail & Related papers (2022-11-05T04:03:55Z) - Towards Zero-Shot Code-Switched Speech Recognition [44.76492452463019]
We seek to build effective code-switched (CS) automatic speech recognition systems (ASR) under the zero-shot setting.
We propose to simplify each monolingual module by allowing them to transcribe all speech segments indiscriminately with a monolingual script.
We apply this transliteration-based approach in an end-to-end differentiable neural network and demonstrate its efficacy for zero-shot CS ASR on Mandarin-English SEAME test sets.
arXiv Detail & Related papers (2022-11-02T19:52:54Z) - Language-agnostic Code-Switching in Sequence-To-Sequence Speech
Recognition [62.997667081978825]
Code-Switching (CS) is referred to the phenomenon of alternately using words and phrases from different languages.
We propose a simple yet effective data augmentation in which audio and corresponding labels of different source languages are transcribed.
We show that this augmentation can even improve the model's performance on inter-sentential language switches not seen during training by 5,03% WER.
arXiv Detail & Related papers (2022-10-17T12:15:57Z) - Learning ASR pathways: A sparse multilingual ASR model [31.147484652643282]
We present ASR pathways, a sparse multilingual ASR model that activates language-specific sub-networks ("pathways")
With the overlapping sub-networks, the shared parameters can also enable knowledge transfer for lower-resource languages via joint multilingual training.
Our proposed ASR pathways outperform both dense models and a language-agnostically pruned model, and provide better performance on low-resource languages.
arXiv Detail & Related papers (2022-09-13T05:14:08Z) - LAE: Language-Aware Encoder for Monolingual and Multilingual ASR [87.74794847245536]
A novel language-aware encoder (LAE) architecture is proposed to handle both situations by disentangling language-specific information.
Experiments conducted on Mandarin-English code-switched speech suggest that the proposed LAE is capable of discriminating different languages in frame-level.
arXiv Detail & Related papers (2022-06-05T04:03:12Z) - Streaming End-to-End Bilingual ASR Systems with Joint Language
Identification [19.09014345299161]
We introduce streaming, end-to-end, bilingual systems that perform both ASR and language identification.
The proposed method is applied to two language pairs: English-Spanish as spoken in the United States, and English-Hindi as spoken in India.
arXiv Detail & Related papers (2020-07-08T05:00:25Z) - Towards Relevance and Sequence Modeling in Language Recognition [39.547398348702025]
We propose a neural network framework utilizing short-sequence information in language recognition.
A new model is proposed for incorporating relevance in language recognition, where parts of speech data are weighted more based on their relevance for the language recognition task.
Experiments are performed using the language recognition task in NIST LRE 2017 Challenge using clean, noisy and multi-speaker speech data.
arXiv Detail & Related papers (2020-04-02T18:31:18Z) - Rnn-transducer with language bias for end-to-end Mandarin-English
code-switching speech recognition [58.105818353866354]
We propose an improved recurrent neural network transducer (RNN-T) model with language bias to alleviate the problem.
We use the language identities to bias the model to predict the CS points.
This promotes the model to learn the language identity information directly from transcription, and no additional LID model is needed.
arXiv Detail & Related papers (2020-02-19T12:01:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.