MetricPrompt: Prompting Model as a Relevance Metric for Few-shot Text
Classification
- URL: http://arxiv.org/abs/2306.08892v1
- Date: Thu, 15 Jun 2023 06:51:35 GMT
- Title: MetricPrompt: Prompting Model as a Relevance Metric for Few-shot Text
Classification
- Authors: Hongyuan Dong, Weinan Zhang, Wanxiang Che
- Abstract summary: MetricPrompt eases verbalizer design difficulty by reformulating few-shot text classification task into text pair relevance estimation task.
We conduct experiments on three widely used text classification datasets across four few-shot settings.
Results show that MetricPrompt outperforms manual verbalizer and other automatic verbalizer design methods across all few-shot settings.
- Score: 65.51149771074944
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Prompting methods have shown impressive performance in a variety of text
mining tasks and applications, especially few-shot ones. Despite the promising
prospects, the performance of prompting model largely depends on the design of
prompt template and verbalizer. In this work, we propose MetricPrompt, which
eases verbalizer design difficulty by reformulating few-shot text
classification task into text pair relevance estimation task. MetricPrompt
adopts prompting model as the relevance metric, further bridging the gap
between Pre-trained Language Model's (PLM) pre-training objective and text
classification task, making possible PLM's smooth adaption. Taking a training
sample and a query one simultaneously, MetricPrompt captures cross-sample
relevance information for accurate relevance estimation. We conduct experiments
on three widely used text classification datasets across four few-shot
settings. Results show that MetricPrompt outperforms manual verbalizer and
other automatic verbalizer design methods across all few-shot settings,
achieving new state-of-the-art (SOTA) performance.
Related papers
- SpeechPrompt: Prompting Speech Language Models for Speech Processing Tasks [94.10497337235083]
We are first to explore the potential of prompting speech LMs in the domain of speech processing.
We reformulate speech processing tasks into speech-to-unit generation tasks.
We show that the prompting method can achieve competitive performance compared to the strong fine-tuning method.
arXiv Detail & Related papers (2024-08-23T13:00:10Z) - Meta-Task Prompting Elicits Embeddings from Large Language Models [54.757445048329735]
We introduce a new unsupervised text embedding method, Meta-Task Prompting with Explicit One-Word Limitation.
We generate high-quality sentence embeddings from Large Language Models without the need for model fine-tuning.
Our findings suggest a new scaling law, offering a versatile and resource-efficient approach for embedding generation across diverse scenarios.
arXiv Detail & Related papers (2024-02-28T16:35:52Z) - GRASS: Unified Generation Model for Speech-to-Semantic Tasks [7.044414457214718]
We introduce a unified end-to-end (E2E) framework that generates target text conditioned on a task-related prompt for audio data.
Our proposed model achieves state-of-the-art (SOTA) results on many benchmarks covering speech named entity recognition, speech sentiment analysis, speech question answering, and more.
To facilitate future work on instruction fine-tuning for speech-to-semantic tasks, we release our instruction dataset and code.
arXiv Detail & Related papers (2023-09-06T06:44:26Z) - Automated Few-shot Classification with Instruction-Finetuned Language
Models [76.69064714392165]
We show that AuT-Few outperforms state-of-the-art few-shot learning methods.
We also show that AuT-Few is the best ranking method across datasets on the RAFT few-shot benchmark.
arXiv Detail & Related papers (2023-05-21T21:50:27Z) - Patch-Prompt Aligned Bayesian Prompt Tuning for Vision-Language Models [48.77653835765705]
We introduce a probabilistic resolution to prompt tuning, where the label-specific prompts are generated hierarchically by first sampling a latent vector from an underlying distribution and then employing a lightweight generative model.
We evaluate the effectiveness of our approach on four tasks: few-shot image recognition, base-to-new generalization, dataset transfer learning, and domain shifts.
arXiv Detail & Related papers (2023-03-16T06:09:15Z) - TEMPERA: Test-Time Prompting via Reinforcement Learning [57.48657629588436]
We propose Test-time Prompt Editing using Reinforcement learning (TEMPERA)
In contrast to prior prompt generation methods, TEMPERA can efficiently leverage prior knowledge.
Our method achieves 5.33x on average improvement in sample efficiency when compared to the traditional fine-tuning methods.
arXiv Detail & Related papers (2022-11-21T22:38:20Z) - STPrompt: Semantic-guided and Task-driven prompts for Effective Few-shot
Classification [5.6205035780719275]
We propose the STPrompt -Semantic-guided and Task-driven Prompt model.
The proposed model achieves the state-of-the-art performance in five different datasets of few-shot text classification tasks.
arXiv Detail & Related papers (2022-10-29T04:42:30Z) - Towards Unified Prompt Tuning for Few-shot Text Classification [47.71344780587704]
We present the Unified Prompt Tuning (UPT) framework, leading to better few-shot text classification for BERT-style models.
In UPT, a novel paradigm Prompt-Options-Verbalizer is proposed for joint prompt learning across different NLP tasks.
We also design a self-supervised task named Knowledge-enhanced Selective Masked Language Modeling to improve the PLM's generalization abilities.
arXiv Detail & Related papers (2022-05-11T07:40:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.