Diffusion Models for Open-Vocabulary Segmentation
- URL: http://arxiv.org/abs/2306.09316v2
- Date: Mon, 30 Sep 2024 03:17:39 GMT
- Title: Diffusion Models for Open-Vocabulary Segmentation
- Authors: Laurynas Karazija, Iro Laina, Andrea Vedaldi, Christian Rupprecht,
- Abstract summary: OVDiff is a novel method that leverages generative text-to-image diffusion models for unsupervised open-vocabulary segmentation.
It relies solely on pre-trained components and outputs the synthesised segmenter directly, without training.
- Score: 79.02153797465324
- License:
- Abstract: Open-vocabulary segmentation is the task of segmenting anything that can be named in an image. Recently, large-scale vision-language modelling has led to significant advances in open-vocabulary segmentation, but at the cost of gargantuan and increasing training and annotation efforts. Hence, we ask if it is possible to use existing foundation models to synthesise on-demand efficient segmentation algorithms for specific class sets, making them applicable in an open-vocabulary setting without the need to collect further data, annotations or perform training. To that end, we present OVDiff, a novel method that leverages generative text-to-image diffusion models for unsupervised open-vocabulary segmentation. OVDiff synthesises support image sets for arbitrary textual categories, creating for each a set of prototypes representative of both the category and its surrounding context (background). It relies solely on pre-trained components and outputs the synthesised segmenter directly, without training. Our approach shows strong performance on a range of benchmarks, obtaining a lead of more than 5% over prior work on PASCAL VOC.
Related papers
- Unleashing the Potential of the Diffusion Model in Few-shot Semantic Segmentation [56.87049651707208]
Few-shot Semantic has evolved into In-context tasks, morphing into a crucial element in assessing generalist segmentation models.
Our initial focus lies in understanding how to facilitate interaction between the query image and the support image, resulting in the proposal of a KV fusion method within the self-attention framework.
Based on our analysis, we establish a simple and effective framework named DiffewS, maximally retaining the original Latent Diffusion Model's generative framework.
arXiv Detail & Related papers (2024-10-03T10:33:49Z) - USE: Universal Segment Embeddings for Open-Vocabulary Image Segmentation [33.11010205890195]
The main challenge in open-vocabulary image segmentation now lies in accurately classifying these segments into text-defined categories.
We introduce the Universal Segment Embedding (USE) framework to address this challenge.
This framework is comprised of two key components: 1) a data pipeline designed to efficiently curate a large amount of segment-text pairs at various granularities, and 2) a universal segment embedding model that enables precise segment classification into a vast range of text-defined categories.
arXiv Detail & Related papers (2024-06-07T21:41:18Z) - Training-Free Open-Vocabulary Segmentation with Offline Diffusion-Augmented Prototype Generation [44.008094698200026]
FreeDA is a training-free diffusion-augmented method for open-vocabulary semantic segmentation.
FreeDA achieves state-of-the-art performance on five datasets.
arXiv Detail & Related papers (2024-04-09T18:00:25Z) - FreeSeg-Diff: Training-Free Open-Vocabulary Segmentation with Diffusion Models [56.71672127740099]
We focus on the task of image segmentation, which is traditionally solved by training models on closed-vocabulary datasets.
We leverage different and relatively small-sized, open-source foundation models for zero-shot open-vocabulary segmentation.
Our approach (dubbed FreeSeg-Diff), which does not rely on any training, outperforms many training-based approaches on both Pascal VOC and COCO datasets.
arXiv Detail & Related papers (2024-03-29T10:38:25Z) - Diffusion Model is Secretly a Training-free Open Vocabulary Semantic
Segmenter [47.29967666846132]
generative text-to-image diffusion models are highly efficient open-vocabulary semantic segmenters.
We introduce a novel training-free approach named DiffSegmenter to generate realistic objects that are semantically faithful to the input text.
Extensive experiments on three benchmark datasets show that the proposed DiffSegmenter achieves impressive results for open-vocabulary semantic segmentation.
arXiv Detail & Related papers (2023-09-06T06:31:08Z) - Exploring Open-Vocabulary Semantic Segmentation without Human Labels [76.15862573035565]
We present ZeroSeg, a novel method that leverages the existing pretrained vision-language model (VL) to train semantic segmentation models.
ZeroSeg overcomes this by distilling the visual concepts learned by VL models into a set of segment tokens, each summarizing a localized region of the target image.
Our approach achieves state-of-the-art performance when compared to other zero-shot segmentation methods under the same training data.
arXiv Detail & Related papers (2023-06-01T08:47:06Z) - Open-vocabulary Panoptic Segmentation with Embedding Modulation [71.15502078615587]
Open-vocabulary image segmentation is attracting increasing attention due to its critical applications in the real world.
Traditional closed-vocabulary segmentation methods are not able to characterize novel objects, whereas several recent open-vocabulary attempts obtain unsatisfactory results.
We propose OPSNet, an omnipotent and data-efficient framework for Open-vocabulary Panopticon.
arXiv Detail & Related papers (2023-03-20T17:58:48Z) - SCNet: Enhancing Few-Shot Semantic Segmentation by Self-Contrastive
Background Prototypes [56.387647750094466]
Few-shot semantic segmentation aims to segment novel-class objects in a query image with only a few annotated examples.
Most of advanced solutions exploit a metric learning framework that performs segmentation through matching each pixel to a learned foreground prototype.
This framework suffers from biased classification due to incomplete construction of sample pairs with the foreground prototype only.
arXiv Detail & Related papers (2021-04-19T11:21:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.