Building blocks for complex tasks: Robust generative event extraction
for radiology reports under domain shifts
- URL: http://arxiv.org/abs/2306.09544v1
- Date: Thu, 15 Jun 2023 23:16:58 GMT
- Title: Building blocks for complex tasks: Robust generative event extraction
for radiology reports under domain shifts
- Authors: Sitong Zhou, Meliha Yetisgen, Mari Ostendorf
- Abstract summary: We show that multi-pass T5-based text-to-text generative models exhibit better generalization across exam modalities compared to approaches that employ BERT-based task-specific classification layers.
We then develop methods that reduce the inference cost of the model, making large-scale corpus processing more feasible for clinical applications.
- Score: 11.845850292404768
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper explores methods for extracting information from radiology reports
that generalize across exam modalities to reduce requirements for annotated
data. We demonstrate that multi-pass T5-based text-to-text generative models
exhibit better generalization across exam modalities compared to approaches
that employ BERT-based task-specific classification layers. We then develop
methods that reduce the inference cost of the model, making large-scale corpus
processing more feasible for clinical applications. Specifically, we introduce
a generative technique that decomposes complex tasks into smaller subtask
blocks, which improves a single-pass model when combined with multitask
training. In addition, we leverage target-domain contexts during inference to
enhance domain adaptation, enabling use of smaller models. Analyses offer
insights into the benefits of different cost reduction strategies.
Related papers
- Lessons Learned on Information Retrieval in Electronic Health Records: A Comparison of Embedding Models and Pooling Strategies [8.822087602255504]
Applying large language models to the clinical domain is challenging due to the context-heavy nature of processing medical records.
This paper explores how different embedding models and pooling methods affect information retrieval for the clinical domain.
arXiv Detail & Related papers (2024-09-23T16:16:08Z) - Back to Basics: A Simple Recipe for Improving Out-of-Domain Retrieval in
Dense Encoders [63.28408887247742]
We study whether training procedures can be improved to yield better generalization capabilities in the resulting models.
We recommend a simple recipe for training dense encoders: Train on MSMARCO with parameter-efficient methods, such as LoRA, and opt for using in-batch negatives unless given well-constructed hard negatives.
arXiv Detail & Related papers (2023-11-16T10:42:58Z) - An Iterative Optimizing Framework for Radiology Report Summarization with ChatGPT [80.33783969507458]
The 'Impression' section of a radiology report is a critical basis for communication between radiologists and other physicians.
Recent studies have achieved promising results in automatic impression generation using large-scale medical text data.
These models often require substantial amounts of medical text data and have poor generalization performance.
arXiv Detail & Related papers (2023-04-17T17:13:42Z) - Meta-learning Pathologies from Radiology Reports using Variance Aware
Prototypical Networks [3.464871689508835]
We propose a simple extension of the Prototypical Networks for few-shot text classification.
Our main idea is to replace the class prototypes by Gaussians and introduce a regularization term that encourages the examples to be clustered near the appropriate class centroids.
arXiv Detail & Related papers (2022-10-22T05:22:29Z) - Generalization Properties of Retrieval-based Models [50.35325326050263]
Retrieval-based machine learning methods have enjoyed success on a wide range of problems.
Despite growing literature showcasing the promise of these models, the theoretical underpinning for such models remains underexplored.
We present a formal treatment of retrieval-based models to characterize their generalization ability.
arXiv Detail & Related papers (2022-10-06T00:33:01Z) - Improving Meta-learning for Low-resource Text Classification and
Generation via Memory Imitation [87.98063273826702]
We propose a memory imitation meta-learning (MemIML) method that enhances the model's reliance on support sets for task adaptation.
A theoretical analysis is provided to prove the effectiveness of our method.
arXiv Detail & Related papers (2022-03-22T12:41:55Z) - A New Sentence Extraction Strategy for Unsupervised Extractive
Summarization Methods [26.326800624948344]
We model the task of extractive text summarization methods from the perspective of Information Theory.
To improve the feature distribution and to decrease the mutual information of summarization sentences, we propose a new sentence extraction strategy.
arXiv Detail & Related papers (2021-12-06T18:00:02Z) - HETFORMER: Heterogeneous Transformer with Sparse Attention for Long-Text
Extractive Summarization [57.798070356553936]
HETFORMER is a Transformer-based pre-trained model with multi-granularity sparse attentions for extractive summarization.
Experiments on both single- and multi-document summarization tasks show that HETFORMER achieves state-of-the-art performance in Rouge F1.
arXiv Detail & Related papers (2021-10-12T22:42:31Z) - SDA: Improving Text Generation with Self Data Augmentation [88.24594090105899]
We propose to improve the standard maximum likelihood estimation (MLE) paradigm by incorporating a self-imitation-learning phase for automatic data augmentation.
Unlike most existing sentence-level augmentation strategies, our method is more general and could be easily adapted to any MLE-based training procedure.
arXiv Detail & Related papers (2021-01-02T01:15:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.