End-to-End Vectorized HD-map Construction with Piecewise Bezier Curve
- URL: http://arxiv.org/abs/2306.09700v1
- Date: Fri, 16 Jun 2023 09:05:52 GMT
- Title: End-to-End Vectorized HD-map Construction with Piecewise Bezier Curve
- Authors: Limeng Qiao, Wenjie Ding, Xi Qiu, Chi Zhang
- Abstract summary: HD-map construction has attracted significant research interest in the autonomous driving community.
We introduce a simple yet effective architecture, named Piecewise Bezier HD-map Network (BeMapNet), which is formulated as a direct set prediction paradigm and postprocessing-free.
In addition, based on the progressively restoration of Bezier curve, we also present an efficient Point-Curve-Region Loss for supervising more robust and precise HD-map modeling.
- Score: 9.129634919566026
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Vectorized high-definition map (HD-map) construction, which focuses on the
perception of centimeter-level environmental information, has attracted
significant research interest in the autonomous driving community. Most
existing approaches first obtain rasterized map with the segmentation-based
pipeline and then conduct heavy post-processing for downstream-friendly
vectorization. In this paper, by delving into parameterization-based methods,
we pioneer a concise and elegant scheme that adopts unified piecewise Bezier
curve. In order to vectorize changeful map elements end-to-end, we elaborate a
simple yet effective architecture, named Piecewise Bezier HD-map Network
(BeMapNet), which is formulated as a direct set prediction paradigm and
postprocessing-free. Concretely, we first introduce a novel IPM-PE Align module
to inject 3D geometry prior into BEV features through common position encoding
in Transformer. Then a well-designed Piecewise Bezier Head is proposed to
output the details of each map element, including the coordinate of control
points and the segment number of curves. In addition, based on the
progressively restoration of Bezier curve, we also present an efficient
Point-Curve-Region Loss for supervising more robust and precise HD-map
modeling. Extensive comparisons show that our method is remarkably superior to
other existing SOTAs by 18.0 mAP at least.
Related papers
- GeoFormer: Learning Point Cloud Completion with Tri-Plane Integrated Transformer [41.26276375114911]
Point cloud completion aims to recover accurate global geometry and preserve fine-grained local details from partial point clouds.
Conventional methods typically predict unseen points directly from 3D point cloud coordinates or use self-projected multi-view depth maps.
We introduce a GeoFormer that simultaneously enhances the global geometric structure of the points and improves the local details.
arXiv Detail & Related papers (2024-08-13T03:15:36Z) - 3D Neural Edge Reconstruction [61.10201396044153]
We introduce EMAP, a new method for learning 3D edge representations with a focus on both lines and curves.
Our method implicitly encodes 3D edge distance and direction in Unsigned Distance Functions (UDF) from multi-view edge maps.
On top of this neural representation, we propose an edge extraction algorithm that robustly abstracts 3D edges from the inferred edge points and their directions.
arXiv Detail & Related papers (2024-05-29T17:23:51Z) - ScalableMap: Scalable Map Learning for Online Long-Range Vectorized HD
Map Construction [42.874195888422584]
We propose a novel end-to-end pipeline for online long-range vectorized high-definition (HD) map construction using on-board camera sensors.
We exploit the properties of map elements to improve the performance of map construction.
arXiv Detail & Related papers (2023-10-20T09:46:24Z) - Neural Gradient Learning and Optimization for Oriented Point Normal
Estimation [53.611206368815125]
We propose a deep learning approach to learn gradient vectors with consistent orientation from 3D point clouds for normal estimation.
We learn an angular distance field based on local plane geometry to refine the coarse gradient vectors.
Our method efficiently conducts global gradient approximation while achieving better accuracy and ability generalization of local feature description.
arXiv Detail & Related papers (2023-09-17T08:35:11Z) - PivotNet: Vectorized Pivot Learning for End-to-end HD Map Construction [10.936405710245625]
We propose a simple yet effective architecture named PivotNet, which adopts unified pivot-based map representations.
PivotNet is remarkably superior to other SOTAs by 5.9 mAP at least.
arXiv Detail & Related papers (2023-08-31T05:43:46Z) - Online Map Vectorization for Autonomous Driving: A Rasterization
Perspective [58.71769343511168]
We introduce a newization-based evaluation metric, which has superior sensitivity and is better suited to real-world autonomous driving scenarios.
We also propose MapVR (Map Vectorization via Rasterization), a novel framework that applies differentiableization to preciseized outputs and then performs geometry-aware supervision on HD maps.
arXiv Detail & Related papers (2023-06-18T08:51:14Z) - InstaGraM: Instance-level Graph Modeling for Vectorized HD Map Learning [6.062751776009753]
We propose online HD map learning framework that detects HD map elements from onboard sensor observations.
InstaGraM, instance-level graph modeling of HD map brings accurate and fast end-to-end vectorized HD map learning.
Our proposed network outperforms previous models by up to 13.7 mAP with up to 33.8X faster time.
arXiv Detail & Related papers (2023-01-10T08:15:35Z) - Flattening-Net: Deep Regular 2D Representation for 3D Point Cloud
Analysis [66.49788145564004]
We present an unsupervised deep neural architecture called Flattening-Net to represent irregular 3D point clouds of arbitrary geometry and topology.
Our methods perform favorably against the current state-of-the-art competitors.
arXiv Detail & Related papers (2022-12-17T15:05:25Z) - Deep Shells: Unsupervised Shape Correspondence with Optimal Transport [52.646396621449]
We propose a novel unsupervised learning approach to 3D shape correspondence.
We show that the proposed method significantly improves over the state-of-the-art on multiple datasets.
arXiv Detail & Related papers (2020-10-28T22:24:07Z) - Joint Multi-Dimension Pruning via Numerical Gradient Update [120.59697866489668]
We present joint multi-dimension pruning (abbreviated as JointPruning), an effective method of pruning a network on three crucial aspects: spatial, depth and channel simultaneously.
We show that our method is optimized collaboratively across the three dimensions in a single end-to-end training and it is more efficient than the previous exhaustive methods.
arXiv Detail & Related papers (2020-05-18T17:57:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.