Using Natural Language Processing and Networks to Automate Structured Literature Reviews: An Application to Farmers Climate Change Adaptation
- URL: http://arxiv.org/abs/2306.09737v2
- Date: Wed, 3 Jul 2024 15:41:20 GMT
- Title: Using Natural Language Processing and Networks to Automate Structured Literature Reviews: An Application to Farmers Climate Change Adaptation
- Authors: Sofia Gil-Clavel, Tatiana Filatova,
- Abstract summary: This work aims to sensibly use Natural Language Processing by extracting variables relations and synthesizing their findings using networks.
As an example, we apply our methodology to the analysis of farmers' adaptation to climate change.
Results show that the use of Natural Language Processing together with networks in a descriptive manner offers a fast and interpretable way to synthesize literature review findings.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The fast-growing number of research articles makes it problematic for scholars to keep track of the new findings related to their areas of expertise. Furthermore, linking knowledge across disciplines in rapidly developing fields becomes challenging for complex topics like climate change that demand interdisciplinary solutions. At the same time, the rise of Black Box types of text summarization makes it difficult to understand how text relationships are built, let alone relate to existing theories conceptualizing cause-effect relationships and permitting hypothesizing. This work aims to sensibly use Natural Language Processing by extracting variables relations and synthesizing their findings using networks while relating to key concepts dominant in relevant disciplines. As an example, we apply our methodology to the analysis of farmers' adaptation to climate change. For this, we perform a Natural Language Processing analysis of publications returned by Scopus in August 2022. Results show that the use of Natural Language Processing together with networks in a descriptive manner offers a fast and interpretable way to synthesize literature review findings as long as researchers back up results with theory.
Related papers
- A Review of the Applications of Deep Learning-Based Emergent Communication [1.6574413179773761]
Emergent communication, or emergent language, is the field of research which studies how human language-like communication systems emerge de novo in deep reinforcement learning environments.
This paper comprehensively reviews the applications of emergent communication research across machine learning, natural language processing, linguistics, and cognitive science.
arXiv Detail & Related papers (2024-07-03T17:43:54Z) - AHAM: Adapt, Help, Ask, Model -- Harvesting LLMs for literature mining [3.8384235322772864]
We present the AHAM' methodology and a metric that guides the domain-specific textbfadaptation of the BERTopic topic modeling framework.
By utilizing the LLaMa2 generative language model, we generate topic definitions via one-shot learning.
For inter-topic similarity evaluation, we leverage metrics from language generation and translation processes.
arXiv Detail & Related papers (2023-12-25T18:23:03Z) - Foundational Models Defining a New Era in Vision: A Survey and Outlook [151.49434496615427]
Vision systems to see and reason about the compositional nature of visual scenes are fundamental to understanding our world.
The models learned to bridge the gap between such modalities coupled with large-scale training data facilitate contextual reasoning, generalization, and prompt capabilities at test time.
The output of such models can be modified through human-provided prompts without retraining, e.g., segmenting a particular object by providing a bounding box, having interactive dialogues by asking questions about an image or video scene or manipulating the robot's behavior through language instructions.
arXiv Detail & Related papers (2023-07-25T17:59:18Z) - Interactive Natural Language Processing [67.87925315773924]
Interactive Natural Language Processing (iNLP) has emerged as a novel paradigm within the field of NLP.
This paper offers a comprehensive survey of iNLP, starting by proposing a unified definition and framework of the concept.
arXiv Detail & Related papers (2023-05-22T17:18:29Z) - Variational Cross-Graph Reasoning and Adaptive Structured Semantics
Learning for Compositional Temporal Grounding [143.5927158318524]
Temporal grounding is the task of locating a specific segment from an untrimmed video according to a query sentence.
We introduce a new Compositional Temporal Grounding task and construct two new dataset splits.
We argue that the inherent structured semantics inside the videos and language is the crucial factor to achieve compositional generalization.
arXiv Detail & Related papers (2023-01-22T08:02:23Z) - Revise and Resubmit: An Intertextual Model of Text-based Collaboration
in Peer Review [52.359007622096684]
Peer review is a key component of the publishing process in most fields of science.
Existing NLP studies focus on the analysis of individual texts.
editorial assistance often requires modeling interactions between pairs of texts.
arXiv Detail & Related papers (2022-04-22T16:39:38Z) - ClimaText: A Dataset for Climate Change Topic Detection [2.9767565026354186]
We introduce textscClimaText, a dataset for sentence-based climate change topic detection.
We find that popular keyword-based models are not adequate for such a complex and evolving task.
Our analysis reveals a great potential for improvement in several directions.
arXiv Detail & Related papers (2020-12-01T13:42:37Z) - Generating Knowledge Graphs by Employing Natural Language Processing and
Machine Learning Techniques within the Scholarly Domain [1.9004296236396943]
We present a new architecture that takes advantage of Natural Language Processing and Machine Learning methods for extracting entities and relationships from research publications.
Within this research work, we i) tackle the challenge of knowledge extraction by employing several state-of-the-art Natural Language Processing and Text Mining tools.
We generated a scientific knowledge graph including 109,105 triples, extracted from 26,827 abstracts of papers within the Semantic Web domain.
arXiv Detail & Related papers (2020-10-28T08:31:40Z) - Positioning yourself in the maze of Neural Text Generation: A
Task-Agnostic Survey [54.34370423151014]
This paper surveys the components of modeling approaches relaying task impacts across various generation tasks such as storytelling, summarization, translation etc.
We present an abstraction of the imperative techniques with respect to learning paradigms, pretraining, modeling approaches, decoding and the key challenges outstanding in the field in each of them.
arXiv Detail & Related papers (2020-10-14T17:54:42Z) - A Scientific Information Extraction Dataset for Nature Inspired
Engineering [12.819150283584328]
This paper describes a dataset of 1,500 manually-annotated sentences that express domain-independent relations between central concepts in a scientific biology text.
The arguments of these relations can be Multi Word Expressions and have been annotated with modifying phrases to form non-projective graphs.
The dataset allows for training and evaluating Relation Extraction algorithms that aim for coarse-grained typing of scientific biological documents.
arXiv Detail & Related papers (2020-05-15T19:25:12Z) - Explaining Relationships Between Scientific Documents [55.23390424044378]
We address the task of explaining relationships between two scientific documents using natural language text.
In this paper we establish a dataset of 622K examples from 154K documents.
arXiv Detail & Related papers (2020-02-02T03:54:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.