A Comprehensive Modeling Approach for Crop Yield Forecasts using
AI-based Methods and Crop Simulation Models
- URL: http://arxiv.org/abs/2306.10121v1
- Date: Fri, 16 Jun 2023 18:13:24 GMT
- Title: A Comprehensive Modeling Approach for Crop Yield Forecasts using
AI-based Methods and Crop Simulation Models
- Authors: Renato Luiz de Freitas Cunha, Bruno Silva, Priscilla Barreira
Avegliano
- Abstract summary: We propose a comprehensive approach for yield forecasting that combines data-driven solutions, crop simulation models, and model surrogates.
Our data-driven modeling approach outperforms previous works with yield correlation predictions close to 91%.
- Score: 0.21094707683348418
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Numerous solutions for yield estimation are either based on data-driven
models, or on crop-simulation models (CSMs). Researchers tend to build
data-driven models using nationwide crop information databases provided by
agencies such as the USDA. On the opposite side of the spectrum, CSMs require
fine data that may be hard to generalize from a handful of fields. In this
paper, we propose a comprehensive approach for yield forecasting that combines
data-driven solutions, crop simulation models, and model surrogates to support
multiple user-profiles and needs when dealing with crop management
decision-making. To achieve this goal, we have developed a solution to
calibrate CSMs at scale, a surrogate model of a CSM assuring faster execution,
and a neural network-based approach that performs efficient risk assessment in
such settings. Our data-driven modeling approach outperforms previous works
with yield correlation predictions close to 91\%. The crop simulation modeling
architecture achieved 6% error; the proposed crop simulation model surrogate
performs predictions almost 100 times faster than the adopted crop simulator
with similar accuracy levels.
Related papers
- On conditional diffusion models for PDE simulations [53.01911265639582]
We study score-based diffusion models for forecasting and assimilation of sparse observations.
We propose an autoregressive sampling approach that significantly improves performance in forecasting.
We also propose a new training strategy for conditional score-based models that achieves stable performance over a range of history lengths.
arXiv Detail & Related papers (2024-10-21T18:31:04Z) - Learning Augmentation Policies from A Model Zoo for Time Series Forecasting [58.66211334969299]
We introduce AutoTSAug, a learnable data augmentation method based on reinforcement learning.
By augmenting the marginal samples with a learnable policy, AutoTSAug substantially improves forecasting performance.
arXiv Detail & Related papers (2024-09-10T07:34:19Z) - Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
Simulation-based inference ( SBI) is capable of approximating the posterior distribution that relates input parameters to a given observation.
In this work, we consider a tall data extension in which multiple observations are available to better infer the parameters of the model.
We compare our method to recently proposed competing approaches on various numerical experiments and demonstrate its superiority in terms of numerical stability and computational cost.
arXiv Detail & Related papers (2024-04-11T09:23:36Z) - Latent Semantic Consensus For Deterministic Geometric Model Fitting [109.44565542031384]
We propose an effective method called Latent Semantic Consensus (LSC)
LSC formulates the model fitting problem into two latent semantic spaces based on data points and model hypotheses.
LSC is able to provide consistent and reliable solutions within only a few milliseconds for general multi-structural model fitting.
arXiv Detail & Related papers (2024-03-11T05:35:38Z) - Predictive Churn with the Set of Good Models [64.05949860750235]
We study the effect of conflicting predictions over the set of near-optimal machine learning models.
We present theoretical results on the expected churn between models within the Rashomon set.
We show how our approach can be used to better anticipate, reduce, and avoid churn in consumer-facing applications.
arXiv Detail & Related papers (2024-02-12T16:15:25Z) - Integrating processed-based models and machine learning for crop yield
prediction [1.3107669223114085]
In this work we investigate potato yield prediction using a hybrid meta-modeling approach.
A crop growth model is employed to generate synthetic data for (pre)training a convolutional neural net.
When applied in silico, our meta-modeling approach yields better predictions than a baseline comprising a purely data-driven approach.
arXiv Detail & Related papers (2023-07-25T12:51:25Z) - Maintaining Stability and Plasticity for Predictive Churn Reduction [8.971668467496055]
We propose a solution called Accumulated Model Combination (AMC)
AMC is a general technique and we propose several instances of it, each having their own advantages depending on the model and data properties.
arXiv Detail & Related papers (2023-05-06T20:56:20Z) - Dataless Knowledge Fusion by Merging Weights of Language Models [51.8162883997512]
Fine-tuning pre-trained language models has become the prevalent paradigm for building downstream NLP models.
This creates a barrier to fusing knowledge across individual models to yield a better single model.
We propose a dataless knowledge fusion method that merges models in their parameter space.
arXiv Detail & Related papers (2022-12-19T20:46:43Z) - fETSmcs: Feature-based ETS model component selection [8.99236558175168]
We propose an efficient approach for ETS model selection by training classifiers on simulated data to predict appropriate model component forms for a given time series.
We evaluate our approach on the widely used forecasting competition data set M4 in terms of both point forecasts and prediction intervals.
arXiv Detail & Related papers (2022-06-26T13:52:43Z) - An Extended Multi-Model Regression Approach for Compressive Strength
Prediction and Optimization of a Concrete Mixture [0.0]
A model based evaluation of concrete compressive strength is of high value, both for the purpose of strength prediction and the mixture optimization.
We take a further step towards improving the accuracy of the prediction model via the weighted combination of multiple regression methods.
A proposed (GA)-based mixture optimization is proposed, building on the obtained multi-regression model.
arXiv Detail & Related papers (2021-06-13T16:10:32Z) - Model-based Policy Optimization with Unsupervised Model Adaptation [37.09948645461043]
We investigate how to bridge the gap between real and simulated data due to inaccurate model estimation for better policy optimization.
We propose a novel model-based reinforcement learning framework AMPO, which introduces unsupervised model adaptation.
Our approach achieves state-of-the-art performance in terms of sample efficiency on a range of continuous control benchmark tasks.
arXiv Detail & Related papers (2020-10-19T14:19:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.