Enhancing the Prediction of Emotional Experience in Movies using Deep
Neural Networks: The Significance of Audio and Language
- URL: http://arxiv.org/abs/2306.10397v1
- Date: Sat, 17 Jun 2023 17:40:27 GMT
- Title: Enhancing the Prediction of Emotional Experience in Movies using Deep
Neural Networks: The Significance of Audio and Language
- Authors: Sogand Mehrpour Mohammadi, Meysam Gouran Orimi, Hamidreza Rabiee
- Abstract summary: Our paper focuses on making use of deep neural network models to accurately predict the range of human emotions experienced during watching movies.
In this certain setup, there exist three clear-cut input modalities that considerably influence the experienced emotions: visual cues derived from RGB video frames, auditory components encompassing sounds, speech, and music, and linguistic elements encompassing actors' dialogues.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Our paper focuses on making use of deep neural network models to accurately
predict the range of human emotions experienced during watching movies. In this
certain setup, there exist three clear-cut input modalities that considerably
influence the experienced emotions: visual cues derived from RGB video frames,
auditory components encompassing sounds, speech, and music, and linguistic
elements encompassing actors' dialogues. Emotions are commonly described using
a two-factor model including valence (ranging from happy to sad) and arousal
(indicating the intensity of the emotion). In this regard, a Plethora of works
have presented a multitude of models aiming to predict valence and arousal from
video content. However, non of these models contain all three modalities, with
language being consistently eliminated across all of them. In this study, we
comprehensively combine all modalities and conduct an analysis to ascertain the
importance of each in predicting valence and arousal. Making use of pre-trained
neural networks, we represent each input modality in our study. In order to
process visual input, we employ pre-trained convolutional neural networks to
recognize scenes[1], objects[2], and actions[3,4]. For audio processing, we
utilize a specialized neural network designed for handling sound-related tasks,
namely SoundNet[5]. Finally, Bidirectional Encoder Representations from
Transformers (BERT) models are used to extract linguistic features[6] in our
analysis. We report results on the COGNIMUSE dataset[7], where our proposed
model outperforms the current state-of-the-art approaches. Surprisingly, our
findings reveal that language significantly influences the experienced arousal,
while sound emerges as the primary determinant for predicting valence. In
contrast, the visual modality exhibits the least impact among all modalities in
predicting emotions.
Related papers
- Speaker Emotion Recognition: Leveraging Self-Supervised Models for Feature Extraction Using Wav2Vec2 and HuBERT [0.0]
We study the use of self-supervised transformer-based models, Wav2Vec2 and HuBERT, to determine the emotion of speakers from their voice.
The proposed solution is evaluated on reputable datasets, including RAVDESS, SHEMO, SAVEE, AESDD, and Emo-DB.
arXiv Detail & Related papers (2024-11-05T10:06:40Z) - EmoDiarize: Speaker Diarization and Emotion Identification from Speech
Signals using Convolutional Neural Networks [0.0]
This research explores the integration of deep learning techniques in speech emotion recognition.
It introduces a framework that combines a pre-existing speaker diarization pipeline and an emotion identification model built on a Convolutional Neural Network (CNN)
The proposed model yields an unweighted accuracy of 63%, demonstrating remarkable efficiency in accurately identifying emotional states within speech signals.
arXiv Detail & Related papers (2023-10-19T16:02:53Z) - HCAM -- Hierarchical Cross Attention Model for Multi-modal Emotion
Recognition [41.837538440839815]
We propose a hierarchical cross-attention model (HCAM) approach to multi-modal emotion recognition.
The input to the model consists of two modalities, i) audio data, processed through a learnable wav2vec approach and, ii) text data represented using a bidirectional encoder representations from transformers (BERT) model.
In order to incorporate contextual knowledge and the information across the two modalities, the audio and text embeddings are combined using a co-attention layer.
arXiv Detail & Related papers (2023-04-14T03:25:00Z) - TriBERT: Full-body Human-centric Audio-visual Representation Learning
for Visual Sound Separation [35.93516937521393]
We introduce TriBERT -- a transformer-based architecture inspired by ViLBERT.
TriBERT enables contextual feature learning across three modalities: vision, pose, and audio.
We show that the learned TriBERT representations are generic and significantly improve performance on other audio-visual tasks.
arXiv Detail & Related papers (2021-10-26T04:50:42Z) - Stimuli-Aware Visual Emotion Analysis [75.68305830514007]
We propose a stimuli-aware visual emotion analysis (VEA) method consisting of three stages, namely stimuli selection, feature extraction and emotion prediction.
To the best of our knowledge, it is the first time to introduce stimuli selection process into VEA in an end-to-end network.
Experiments demonstrate that the proposed method consistently outperforms the state-of-the-art approaches on four public visual emotion datasets.
arXiv Detail & Related papers (2021-09-04T08:14:52Z) - Learning to Predict Salient Faces: A Novel Visual-Audio Saliency Model [96.24038430433885]
We propose a novel multi-modal video saliency model consisting of three branches: visual, audio and face.
Experimental results show that the proposed method outperforms 11 state-of-the-art saliency prediction works.
arXiv Detail & Related papers (2021-03-29T09:09:39Z) - Leveraging Recent Advances in Deep Learning for Audio-Visual Emotion
Recognition [2.1485350418225244]
Spontaneous multi-modal emotion recognition has been extensively studied for human behavior analysis.
We propose a new deep learning-based approach for audio-visual emotion recognition.
arXiv Detail & Related papers (2021-03-16T15:49:15Z) - Continuous Emotion Recognition with Spatiotemporal Convolutional Neural
Networks [82.54695985117783]
We investigate the suitability of state-of-the-art deep learning architectures for continuous emotion recognition using long video sequences captured in-the-wild.
We have developed and evaluated convolutional recurrent neural networks combining 2D-CNNs and long short term-memory units, and inflated 3D-CNN models, which are built by inflating the weights of a pre-trained 2D-CNN model during fine-tuning.
arXiv Detail & Related papers (2020-11-18T13:42:05Z) - "Notic My Speech" -- Blending Speech Patterns With Multimedia [65.91370924641862]
We propose a view-temporal attention mechanism to model both the view dependence and the visemic importance in speech recognition and understanding.
Our proposed method outperformed the existing work by 4.99% in terms of the viseme error rate.
We show that there is a strong correlation between our model's understanding of multi-view speech and the human perception.
arXiv Detail & Related papers (2020-06-12T06:51:55Z) - An End-to-End Visual-Audio Attention Network for Emotion Recognition in
User-Generated Videos [64.91614454412257]
We propose to recognize video emotions in an end-to-end manner based on convolutional neural networks (CNNs)
Specifically, we develop a deep Visual-Audio Attention Network (VAANet), a novel architecture that integrates spatial, channel-wise, and temporal attentions into a visual 3D CNN and temporal attentions into an audio 2D CNN.
arXiv Detail & Related papers (2020-02-12T15:33:59Z) - Visually Guided Self Supervised Learning of Speech Representations [62.23736312957182]
We propose a framework for learning audio representations guided by the visual modality in the context of audiovisual speech.
We employ a generative audio-to-video training scheme in which we animate a still image corresponding to a given audio clip and optimize the generated video to be as close as possible to the real video of the speech segment.
We achieve state of the art results for emotion recognition and competitive results for speech recognition.
arXiv Detail & Related papers (2020-01-13T14:53:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.