Generation of Radiology Findings in Chest X-Ray by Leveraging
Collaborative Knowledge
- URL: http://arxiv.org/abs/2306.10448v1
- Date: Sun, 18 Jun 2023 00:51:28 GMT
- Title: Generation of Radiology Findings in Chest X-Ray by Leveraging
Collaborative Knowledge
- Authors: Manuela Daniela Danu, George Marica, Sanjeev Kumar Karn, Bogdan
Georgescu, Awais Mansoor, Florin Ghesu, Lucian Mihai Itu, Constantin Suciu,
Sasa Grbic, Oladimeji Farri, Dorin Comaniciu
- Abstract summary: The cognitive task of interpreting medical images remains the most critical and often time-consuming step in the radiology workflow.
This work focuses on reducing the workload of radiologists who spend most of their time either writing or narrating the Findings.
Unlike past research, which addresses radiology report generation as a single-step image captioning task, we have further taken into consideration the complexity of interpreting CXR images.
- Score: 6.792487817626456
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Among all the sub-sections in a typical radiology report, the Clinical
Indications, Findings, and Impression often reflect important details about the
health status of a patient. The information included in Impression is also
often covered in Findings. While Findings and Impression can be deduced by
inspecting the image, Clinical Indications often require additional context.
The cognitive task of interpreting medical images remains the most critical and
often time-consuming step in the radiology workflow. Instead of generating an
end-to-end radiology report, in this paper, we focus on generating the Findings
from automated interpretation of medical images, specifically chest X-rays
(CXRs). Thus, this work focuses on reducing the workload of radiologists who
spend most of their time either writing or narrating the Findings. Unlike past
research, which addresses radiology report generation as a single-step image
captioning task, we have further taken into consideration the complexity of
interpreting CXR images and propose a two-step approach: (a) detecting the
regions with abnormalities in the image, and (b) generating relevant text for
regions with abnormalities by employing a generative large language model
(LLM). This two-step approach introduces a layer of interpretability and aligns
the framework with the systematic reasoning that radiologists use when
reviewing a CXR.
Related papers
- FG-CXR: A Radiologist-Aligned Gaze Dataset for Enhancing Interpretability in Chest X-Ray Report Generation [9.374812942790953]
We introduce Fine-Grained CXR dataset, which provides fine-grained paired information between the captions generated by radiologists and the corresponding gaze attention heatmaps for each anatomy.
Our analysis reveals that simply applying black-box image captioning methods to generate reports cannot adequately explain which information in CXR is utilized.
We propose a novel explainable radiologist's attention generator network (Gen-XAI) that mimics the diagnosis process of radiologists, explicitly constraining its output to closely align with both radiologist's gaze attention and transcript.
arXiv Detail & Related papers (2024-11-23T02:22:40Z) - Decoding Radiologists' Intentions: A Novel System for Accurate Region Identification in Chest X-ray Image Analysis [2.207061125661163]
In chest X-ray (CXR) image analysis, radiologists meticulously examine various regions, documenting their observations in reports.
The prevalence of errors in CXR diagnoses, particularly among inexperienced radiologists and hospital residents, underscores the importance of understanding radiologists' intentions and the corresponding regions of interest.
We propose a novel system designed to identify the primary intentions articulated by radiologists in their reports and the corresponding regions of interest in CXR images.
arXiv Detail & Related papers (2024-04-29T15:18:26Z) - Radiology Report Generation Using Transformers Conditioned with
Non-imaging Data [55.17268696112258]
This paper proposes a novel multi-modal transformer network that integrates chest x-ray (CXR) images and associated patient demographic information.
The proposed network uses a convolutional neural network to extract visual features from CXRs and a transformer-based encoder-decoder network that combines the visual features with semantic text embeddings of patient demographic information.
arXiv Detail & Related papers (2023-11-18T14:52:26Z) - Act Like a Radiologist: Radiology Report Generation across Anatomical Regions [50.13206214694885]
X-RGen is a radiologist-minded report generation framework across six anatomical regions.
In X-RGen, we seek to mimic the behaviour of human radiologists, breaking them down into four principal phases.
We enhance the recognition capacity of the image encoder by analysing images and reports across various regions.
arXiv Detail & Related papers (2023-05-26T07:12:35Z) - Local Contrastive Learning for Medical Image Recognition [0.0]
Local Region Contrastive Learning (LRCLR) is a flexible fine-tuning framework that adds layers for significant image region selection and cross-modality interaction.
Our results on an external validation set of chest x-rays suggest that LRCLR identifies significant local image regions and provides meaningful interpretation against radiology text.
arXiv Detail & Related papers (2023-03-24T17:04:26Z) - Improving Radiology Summarization with Radiograph and Anatomy Prompts [60.30659124918211]
We propose a novel anatomy-enhanced multimodal model to promote impression generation.
In detail, we first construct a set of rules to extract anatomies and put these prompts into each sentence to highlight anatomy characteristics.
We utilize a contrastive learning module to align these two representations at the overall level and use a co-attention to fuse them at the sentence level.
arXiv Detail & Related papers (2022-10-15T14:05:03Z) - Medical Image Captioning via Generative Pretrained Transformers [57.308920993032274]
We combine two language models, the Show-Attend-Tell and the GPT-3, to generate comprehensive and descriptive radiology records.
The proposed model is tested on two medical datasets, the Open-I, MIMIC-CXR, and the general-purpose MS-COCO.
arXiv Detail & Related papers (2022-09-28T10:27:10Z) - Generative Residual Attention Network for Disease Detection [51.60842580044539]
We present a novel approach for disease generation in X-rays using a conditional generative adversarial learning.
We generate a corresponding radiology image in a target domain while preserving the identity of the patient.
We then use the generated X-ray image in the target domain to augment our training to improve the detection performance.
arXiv Detail & Related papers (2021-10-25T14:15:57Z) - Auxiliary Signal-Guided Knowledge Encoder-Decoder for Medical Report
Generation [107.3538598876467]
We propose an Auxiliary Signal-Guided Knowledge-Decoder (ASGK) to mimic radiologists' working patterns.
ASGK integrates internal visual feature fusion and external medical linguistic information to guide medical knowledge transfer and learning.
arXiv Detail & Related papers (2020-06-06T01:00:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.