Transferring Neural Potentials For High Order Dependency Parsing
- URL: http://arxiv.org/abs/2306.10469v1
- Date: Sun, 18 Jun 2023 03:58:41 GMT
- Title: Transferring Neural Potentials For High Order Dependency Parsing
- Authors: Farshad Noravesh
- Abstract summary: The present paper uses biaffine scores to provide an estimate of the arc scores and is then propagated into a graphical model.
The inference inside the graphical model is solved using dual decomposition.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: High order dependency parsing leverages high order features such as siblings
or grandchildren to improve state of the art accuracy of current first order
dependency parsers. The present paper uses biaffine scores to provide an
estimate of the arc scores and is then propagated into a graphical model. The
inference inside the graphical model is solved using dual decomposition. The
present algorithm propagates biaffine neural scores to the graphical model and
by leveraging dual decomposition inference, the overall circuit is trained
end-to-end to transfer first order informations to the high order informations.
Related papers
- Sub-graph Based Diffusion Model for Link Prediction [43.15741675617231]
Denoising Diffusion Probabilistic Models (DDPMs) represent a contemporary class of generative models with exceptional qualities.
We build a novel generative model for link prediction using a dedicated design to decompose the likelihood estimation process via the Bayesian formula.
Our proposed method presents numerous advantages: (1) transferability across datasets without retraining, (2) promising generalization on limited training data, and (3) robustness against graph adversarial attacks.
arXiv Detail & Related papers (2024-09-13T02:23:55Z) - Boosting Graph Neural Network Expressivity with Learnable Lanczos Constraints [7.605749412696919]
Graph Neural Networks (GNNs) excel in handling graph-structured data but often underperform in link prediction tasks.
We present a novel method to enhance the expressivity of GNNs by embedding induced subgraphs into the graph Laplacian matrix's eigenbasis.
We demonstrate the ability to distinguish graphs that are indistinguishable by 2-WL, while maintaining efficient time complexity.
arXiv Detail & Related papers (2024-08-22T12:22:00Z) - What Improves the Generalization of Graph Transformers? A Theoretical Dive into the Self-attention and Positional Encoding [67.59552859593985]
Graph Transformers, which incorporate self-attention and positional encoding, have emerged as a powerful architecture for various graph learning tasks.
This paper introduces first theoretical investigation of a shallow Graph Transformer for semi-supervised classification.
arXiv Detail & Related papers (2024-06-04T05:30:16Z) - A Simplified Framework for Contrastive Learning for Node Representations [2.277447144331876]
We investigate the potential of deploying contrastive learning in combination with Graph Neural Networks for embedding nodes in a graph.
We show that the quality of the resulting embeddings and training time can be significantly improved by a simple column-wise postprocessing of the embedding matrix.
This modification yields improvements in downstream classification tasks of up to 1.5% and even beats existing state-of-the-art approaches on 6 out of 8 different benchmarks.
arXiv Detail & Related papers (2023-05-01T02:04:36Z) - GrannGAN: Graph annotation generative adversarial networks [72.66289932625742]
We consider the problem of modelling high-dimensional distributions and generating new examples of data with complex relational feature structure coherent with a graph skeleton.
The model we propose tackles the problem of generating the data features constrained by the specific graph structure of each data point by splitting the task into two phases.
In the first it models the distribution of features associated with the nodes of the given graph, in the second it complements the edge features conditionally on the node features.
arXiv Detail & Related papers (2022-12-01T11:49:07Z) - Optimal Propagation for Graph Neural Networks [51.08426265813481]
We propose a bi-level optimization approach for learning the optimal graph structure.
We also explore a low-rank approximation model for further reducing the time complexity.
arXiv Detail & Related papers (2022-05-06T03:37:00Z) - Learning Graph Regularisation for Guided Super-Resolution [77.7568596501908]
We introduce a novel formulation for guided super-resolution.
Its core is a differentiable optimisation layer that operates on a learned affinity graph.
We extensively evaluate our method on several datasets, and consistently outperform recent baselines in terms of quantitative reconstruction errors.
arXiv Detail & Related papers (2022-03-27T13:12:18Z) - Reinforcement Learning Based Query Vertex Ordering Model for Subgraph
Matching [58.39970828272366]
Subgraph matching algorithms enumerate all is embeddings of a query graph in a data graph G.
matching order plays a critical role in time efficiency of these backtracking based subgraph matching algorithms.
In this paper, for the first time we apply the Reinforcement Learning (RL) and Graph Neural Networks (GNNs) techniques to generate the high-quality matching order for subgraph matching algorithms.
arXiv Detail & Related papers (2022-01-25T00:10:03Z) - DGEM: A New Dual-modal Graph Embedding Method in Recommendation System [18.33515434926957]
In the current deep learning based recommendation system, the embedding method is generally employed to complete the conversion from the high-dimensional sparse feature vector to the low-dimensional dense feature vector.
We propose the Dual-modal Graph Embedding Method (DGEM) to solve these problems.
arXiv Detail & Related papers (2021-08-09T13:31:56Z) - Line Graph Neural Networks for Link Prediction [71.00689542259052]
We consider the graph link prediction task, which is a classic graph analytical problem with many real-world applications.
In this formalism, a link prediction problem is converted to a graph classification task.
We propose to seek a radically different and novel path by making use of the line graphs in graph theory.
In particular, each node in a line graph corresponds to a unique edge in the original graph. Therefore, link prediction problems in the original graph can be equivalently solved as a node classification problem in its corresponding line graph, instead of a graph classification task.
arXiv Detail & Related papers (2020-10-20T05:54:31Z) - Neuralizing Efficient Higher-order Belief Propagation [19.436520792345064]
We propose to combine approaches to learn better node and graph representations.
We derive an efficient approximate sum-product loopy belief propagation inference algorithm for higher-order PGMs.
Our model indeed captures higher-order information, substantially outperforming state-of-the-art $k$-order graph neural networks in molecular datasets.
arXiv Detail & Related papers (2020-10-19T07:51:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.