Neural Inventory Control in Networks via Hindsight Differentiable Policy Optimization
- URL: http://arxiv.org/abs/2306.11246v2
- Date: Mon, 22 Apr 2024 20:07:31 GMT
- Title: Neural Inventory Control in Networks via Hindsight Differentiable Policy Optimization
- Authors: Matias Alvo, Daniel Russo, Yash Kanoria,
- Abstract summary: We argue that inventory management presents unique opportunities for reliably applying and evaluating deep reinforcement learning (DRL) algorithms.
The first is Hindsight Differentiable Policy Optimization (HDPO), which performs gradient descent to optimize policy performance.
The second technique involves aligning policy (neural) network structures with the structure of the inventory network.
- Score: 5.590976834881065
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We argue that inventory management presents unique opportunities for reliably applying and evaluating deep reinforcement learning (DRL). Toward reliable application, we emphasize and test two techniques. The first is Hindsight Differentiable Policy Optimization (HDPO), which performs stochastic gradient descent to optimize policy performance while avoiding the need to repeatedly deploy randomized policies in the environment-as is common with generic policy gradient methods. Our second technique involves aligning policy (neural) network architectures with the structure of the inventory network. Specifically, we focus on a network with a single warehouse that consolidates inventory from external suppliers, holds it, and then distributes it to many stores as needed. In this setting, we introduce the symmetry-aware policy network architecture. We motivate this architecture by establishing an asymptotic performance guarantee and empirically demonstrate its ability to reduce the amount of data needed to uncover strong policies. Both techniques exploit structures inherent in inventory management problems, moving beyond generic DRL algorithms. Toward rigorous evaluation, we create and share new benchmark problems, divided into two categories. One type focuses on problems with hidden structures that allow us to compute or bound the cost of the true optimal policy. Across four problems of this type, we find HDPO consistently attains near-optimal performance, handling up to 60-dimensional raw state vectors effectively. The other type of evaluation involves constructing a test problem using real time series data from a large retailer, where the optimum is poorly understood. Here, we find HDPO methods meaningfully outperform a variety of generalized newsvendor heuristics. Our code can be found at github.com/MatiasAlvo/Neural_inventory_control.
Related papers
- SimQ-NAS: Simultaneous Quantization Policy and Neural Architecture
Search [6.121126813817338]
Recent one-shot Neural Architecture Search algorithms rely on training a hardware-agnostic super-network tailored to a specific task and then extracting efficient sub-networks for different hardware platforms.
We show that by using multi-objective search algorithms paired with lightly trained predictors, we can efficiently search for both the sub-network architecture and the corresponding quantization policy.
arXiv Detail & Related papers (2023-12-19T22:08:49Z) - Adjustable Robust Reinforcement Learning for Online 3D Bin Packing [11.157035538606968]
Current deep reinforcement learning methods for online 3D-BPP fail in real-world settings where some worst-case scenarios can materialize.
We propose an adjustable robust reinforcement learning framework that allows efficient adjustment of robustness weights.
Experiments demonstrate that AR2L is versatile in the sense that it improves policy robustness while maintaining an acceptable level of performance for the nominal case.
arXiv Detail & Related papers (2023-10-06T15:34:21Z) - Probabilistic Reach-Avoid for Bayesian Neural Networks [71.67052234622781]
We show that an optimal synthesis algorithm can provide more than a four-fold increase in the number of certifiable states.
The algorithm is able to provide more than a three-fold increase in the average guaranteed reach-avoid probability.
arXiv Detail & Related papers (2023-10-03T10:52:21Z) - Diversity Through Exclusion (DTE): Niche Identification for
Reinforcement Learning through Value-Decomposition [63.67574523750839]
We propose a generic reinforcement learning (RL) algorithm that performs better than baseline deep Q-learning algorithms in environments with multiple variably-valued niches.
We show that agents trained this way can escape poor-but-attractive local optima to instead converge to harder-to-discover higher value strategies.
arXiv Detail & Related papers (2023-02-02T16:00:19Z) - Optimistic Linear Support and Successor Features as a Basis for Optimal
Policy Transfer [7.970144204429356]
We introduce an SF-based extension of the Optimistic Linear Support algorithm to learn a set of policies whose SFs form a convex coverage set.
We prove that policies in this set can be combined via generalized policy improvement to construct optimal behaviors for any new linearly-expressible tasks.
arXiv Detail & Related papers (2022-06-22T19:00:08Z) - Learning Optimal Antenna Tilt Control Policies: A Contextual Linear
Bandit Approach [65.27783264330711]
Controlling antenna tilts in cellular networks is imperative to reach an efficient trade-off between network coverage and capacity.
We devise algorithms learning optimal tilt control policies from existing data.
We show that they can produce optimal tilt update policy using much fewer data samples than naive or existing rule-based learning algorithms.
arXiv Detail & Related papers (2022-01-06T18:24:30Z) - Math Programming based Reinforcement Learning for Multi-Echelon
Inventory Management [1.9161790404101895]
Reinforcement learning has lead to considerable break-throughs in diverse areas such as robotics, games and many others.
But the application to RL in complex real-world decision making problems remains limited.
These characteristics make the problem considerably harder to solve for existing RL methods that rely on enumeration techniques to solve per step action problems.
We show that a properly selected discretization of the underlying uncertain distribution can yield near optimal actor policy even with very few samples from the underlying uncertainty.
We find that PARL outperforms commonly used base stock by 44.7% and the best performing RL method by up to 12.1% on average
arXiv Detail & Related papers (2021-12-04T01:40:34Z) - Robust Predictable Control [149.71263296079388]
We show that our method achieves much tighter compression than prior methods, achieving up to 5x higher reward than a standard information bottleneck.
We also demonstrate that our method learns policies that are more robust and generalize better to new tasks.
arXiv Detail & Related papers (2021-09-07T17:29:34Z) - Risk-Sensitive Deep RL: Variance-Constrained Actor-Critic Provably Finds
Globally Optimal Policy [95.98698822755227]
We make the first attempt to study risk-sensitive deep reinforcement learning under the average reward setting with the variance risk criteria.
We propose an actor-critic algorithm that iteratively and efficiently updates the policy, the Lagrange multiplier, and the Fenchel dual variable.
arXiv Detail & Related papers (2020-12-28T05:02:26Z) - Queueing Network Controls via Deep Reinforcement Learning [0.0]
We develop a Proximal policy optimization algorithm for queueing networks.
The algorithm consistently generates control policies that outperform state-of-arts in literature.
A key to the successes of our PPO algorithm is the use of three variance reduction techniques in estimating the relative value function.
arXiv Detail & Related papers (2020-07-31T01:02:57Z) - Resource Allocation via Model-Free Deep Learning in Free Space Optical
Communications [119.81868223344173]
The paper investigates the general problem of resource allocation for mitigating channel fading effects in Free Space Optical (FSO) communications.
Under this framework, we propose two algorithms that solve FSO resource allocation problems.
arXiv Detail & Related papers (2020-07-27T17:38:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.