Digitization of a random signal from the interference of laser pulses
- URL: http://arxiv.org/abs/2306.11361v1
- Date: Tue, 20 Jun 2023 08:00:35 GMT
- Title: Digitization of a random signal from the interference of laser pulses
- Authors: Roman Shakhovoy
- Abstract summary: We consider the problem of digitizing laser pulses with random intensity and analyze various approaches used to estimate the contribution of classical noise.
A simple method for determining the quantum reduction factor suitable for digitization with an analog-to-digital converter is proposed.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the study of quantum random number generators (QRNGs), the problem of
random signal digitization is often not considered in detail. However, in the
context of a standalone QRNG device, this issue is very important. In this
paper, we consider the problem of digitizing laser pulses with random intensity
and analyze various approaches used to estimate the contribution of classical
noise. A simple method for determining the quantum reduction factor suitable
for digitization with an analog-to-digital converter is proposed.
Related papers
- A Compact Quantum Random Number Generator Based on Balanced Detection of Shot Noise [0.0]
We describe a scheme to extract random numbers using balanced detection of shot noise from an LED in a commercially available off-the-shelf package.
The design is optimised for manufacturability, cost, and size.
arXiv Detail & Related papers (2024-09-30T17:18:45Z) - Quantum Random Number Generation Based on Phase Reconstruction [1.1085288227234302]
Quantum random number generator (QRNG) utilizes the intrinsic randomness of quantum systems to generate genuine random numbers.
Traditional phase noise QRNGs suffer from a 50% loss of quantum entropy during the randomness extraction process.
We propose a phase-reconstruction quantum random number generation scheme, in which the phase noise of a laser is reconstructed by simultaneously measuring the quadratures of the light field.
arXiv Detail & Related papers (2024-01-16T12:44:24Z) - Quantum Random Number Generator Based on LED [0.0]
Quantum random number generators (QRNGs) produce random numbers based on the intrinsic probabilistic nature of quantum mechanics.
In this paper, we design and fabricate an embedded QRNG that produces random numbers based on fluctuations of spontaneous emission and absorption in a LED.
This device could pass NIST tests, the generation rate is 1 Mbit/s and the randomness of the output data is invariant in time.
arXiv Detail & Related papers (2023-05-25T14:31:32Z) - Gain-switched vcsel as a quantum entropy source: the problem of quantum
and classical noise [0.0]
We consider the problem of quantum noise extraction from polarization swapping in a gain-switched VCSEL.
We show how to evaluate the contribution of classical noise and how to calculate the quantum reduction factor required for post-processing.
arXiv Detail & Related papers (2023-01-27T20:09:00Z) - Digital noise spectroscopy with a quantum sensor [57.53000001488777]
We introduce and experimentally demonstrate a quantum sensing protocol to sample and reconstruct the auto-correlation of a noise process.
Walsh noise spectroscopy method exploits simple sequences of spin-flip pulses to generate a complete basis of digital filters.
We experimentally reconstruct the auto-correlation function of the effective magnetic field produced by the nuclear-spin bath on the electronic spin of a single nitrogen-vacancy center in diamond.
arXiv Detail & Related papers (2022-12-19T02:19:35Z) - Phase Randomness in a Semiconductor Laser: the Issue of Quantum Random
Number Generation [83.48996461770017]
This paper describes theoretical and experimental methods for estimating the degree of phase randomization in a gain-switched laser.
We show that the interference signal remains quantum in nature even in the presence of classical phase drift in the interferometer.
arXiv Detail & Related papers (2022-09-20T14:07:39Z) - Testing randomness of series generated in Bell's experiment [62.997667081978825]
We use a toy fiber optic based setup to generate binary series, and evaluate their level of randomness according to Ville principle.
Series are tested with a battery of standard statistical indicators, Hurst, Kolmogorov complexity, minimum entropy, Takensarity dimension of embedding, and Augmented Dickey Fuller and Kwiatkowski Phillips Schmidt Shin to check station exponent.
The level of randomness of series obtained by applying Toeplitz extractor to rejected series is found to be indistinguishable from the level of non-rejected raw ones.
arXiv Detail & Related papers (2022-08-31T17:39:29Z) - Dual-Frequency Quantum Phase Estimation Mitigates the Spectral Leakage
of Quantum Algorithms [76.15799379604898]
Quantum phase estimation suffers from spectral leakage when the reciprocal of the record length is not an integer multiple of the unknown phase.
We propose a dual-frequency estimator, which approaches the Cramer-Rao bound, when multiple samples are available.
arXiv Detail & Related papers (2022-01-23T17:20:34Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Quantum Random Number Generation using a Solid-State Single-Photon
Source [89.24951036534168]
Quantum random number generation (QRNG) harnesses the intrinsic randomness of quantum mechanical phenomena.
We demonstrate QRNG with a quantum emitter in hexagonal boron nitride.
Our results open a new avenue to the fabrication of on-chip deterministic random number generators.
arXiv Detail & Related papers (2020-01-28T22:47:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.