G-NM: A Group of Numerical Time Series Prediction Models
- URL: http://arxiv.org/abs/2306.11667v5
- Date: Fri, 1 Dec 2023 02:58:20 GMT
- Title: G-NM: A Group of Numerical Time Series Prediction Models
- Authors: Juyoung Yun
- Abstract summary: Group of Numerical Time Series Prediction Model (G-NM) encapsulates both linear and non-linear dependencies, seasonalities, and trends present in time series data.
G-NM is explicitly constructed to augment our predictive capabilities related to patterns and trends inherent in complex natural phenomena.
- Score: 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: In this study, we focus on the development and implementation of a
comprehensive ensemble of numerical time series forecasting models,
collectively referred to as the Group of Numerical Time Series Prediction Model
(G-NM). This inclusive set comprises traditional models such as Autoregressive
Integrated Moving Average (ARIMA), Holt-Winters' method, and Support Vector
Regression (SVR), in addition to modern neural network models including
Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM). G-NM is
explicitly constructed to augment our predictive capabilities related to
patterns and trends inherent in complex natural phenomena. By utilizing time
series data relevant to these events, G-NM facilitates the prediction of such
phenomena over extended periods. The primary objective of this research is to
both advance our understanding of such occurrences and to significantly enhance
the accuracy of our forecasts. G-NM encapsulates both linear and non-linear
dependencies, seasonalities, and trends present in time series data. Each of
these models contributes distinct strengths, from ARIMA's resilience in
handling linear trends and seasonality, SVR's proficiency in capturing
non-linear patterns, to LSTM's adaptability in modeling various components of
time series data. Through the exploitation of the G-NM potential, we strive to
advance the state-of-the-art in large-scale time series forecasting models. We
anticipate that this research will represent a significant stepping stone in
our ongoing endeavor to comprehend and forecast the complex events that
constitute the natural world.
Related papers
- DyG-Mamba: Continuous State Space Modeling on Dynamic Graphs [59.434893231950205]
Dynamic graph learning aims to uncover evolutionary laws in real-world systems.
We propose DyG-Mamba, a new continuous state space model for dynamic graph learning.
We show that DyG-Mamba achieves state-of-the-art performance on most datasets.
arXiv Detail & Related papers (2024-08-13T15:21:46Z) - SFANet: Spatial-Frequency Attention Network for Weather Forecasting [54.470205739015434]
Weather forecasting plays a critical role in various sectors, driving decision-making and risk management.
Traditional methods often struggle to capture the complex dynamics of meteorological systems.
We propose a novel framework designed to address these challenges and enhance the accuracy of weather prediction.
arXiv Detail & Related papers (2024-05-29T08:00:15Z) - PDETime: Rethinking Long-Term Multivariate Time Series Forecasting from
the perspective of partial differential equations [49.80959046861793]
We present PDETime, a novel LMTF model inspired by the principles of Neural PDE solvers.
Our experimentation across seven diversetemporal real-world LMTF datasets reveals that PDETime adapts effectively to the intrinsic nature of the data.
arXiv Detail & Related papers (2024-02-25T17:39:44Z) - Graph-enabled Reinforcement Learning for Time Series Forecasting with
Adaptive Intelligence [11.249626785206003]
We propose a novel approach for predicting time-series data using Graphical neural network (GNN) and monitoring with Reinforcement Learning (RL)
GNNs are able to explicitly incorporate the graph structure of the data into the model, allowing them to capture temporal dependencies in a more natural way.
This approach allows for more accurate predictions in complex temporal structures, such as those found in healthcare, traffic and weather forecasting.
arXiv Detail & Related papers (2023-09-18T22:25:12Z) - Contextually Enhanced ES-dRNN with Dynamic Attention for Short-Term Load
Forecasting [1.1602089225841632]
The proposed model is composed of two simultaneously trained tracks: the context track and the main track.
The RNN architecture consists of multiple recurrent layers stacked with hierarchical dilations and equipped with recently proposed attentive recurrent cells.
The model produces both point forecasts and predictive intervals.
arXiv Detail & Related papers (2022-12-18T07:42:48Z) - Pre-training Enhanced Spatial-temporal Graph Neural Network for
Multivariate Time Series Forecasting [13.441945545904504]
We propose a novel framework, in which STGNN is Enhanced by a scalable time series Pre-training model (STEP)
Specifically, we design a pre-training model to efficiently learn temporal patterns from very long-term history time series.
Our framework is capable of significantly enhancing downstream STGNNs, and our pre-training model aptly captures temporal patterns.
arXiv Detail & Related papers (2022-06-18T04:24:36Z) - Multivariate Time Series Forecasting with Dynamic Graph Neural ODEs [65.18780403244178]
We propose a continuous model to forecast Multivariate Time series with dynamic Graph neural Ordinary Differential Equations (MTGODE)
Specifically, we first abstract multivariate time series into dynamic graphs with time-evolving node features and unknown graph structures.
Then, we design and solve a neural ODE to complement missing graph topologies and unify both spatial and temporal message passing.
arXiv Detail & Related papers (2022-02-17T02:17:31Z) - Model-Attentive Ensemble Learning for Sequence Modeling [86.4785354333566]
We present Model-Attentive Ensemble learning for Sequence modeling (MAES)
MAES is a mixture of time-series experts which leverages an attention-based gating mechanism to specialize the experts on different sequence dynamics and adaptively weight their predictions.
We demonstrate that MAES significantly out-performs popular sequence models on datasets subject to temporal shift.
arXiv Detail & Related papers (2021-02-23T05:23:35Z) - Global Models for Time Series Forecasting: A Simulation Study [2.580765958706854]
We simulate time series from simple data generating processes (DGP), such as Auto Regressive (AR) and Seasonal AR, to complex DGPs, such as Chaotic Logistic Map, Self-Exciting Threshold Auto-Regressive, and Mackey-Glass equations.
The lengths and the number of series in the dataset are varied in different scenarios.
We perform experiments on these datasets using global forecasting models including Recurrent Neural Networks (RNN), Feed-Forward Neural Networks, Pooled Regression (PR) models, and Light Gradient Boosting Models (LGBM)
arXiv Detail & Related papers (2020-12-23T04:45:52Z) - Stochastically forced ensemble dynamic mode decomposition for
forecasting and analysis of near-periodic systems [65.44033635330604]
We introduce a novel load forecasting method in which observed dynamics are modeled as a forced linear system.
We show that its use of intrinsic linear dynamics offers a number of desirable properties in terms of interpretability and parsimony.
Results are presented for a test case using load data from an electrical grid.
arXiv Detail & Related papers (2020-10-08T20:25:52Z) - Industrial Forecasting with Exponentially Smoothed Recurrent Neural
Networks [0.0]
We present a class of exponential smoothed recurrent neural networks (RNNs) which are well suited to modeling non-stationary dynamical systems arising in industrial applications.
Application of exponentially smoothed RNNs to forecasting electricity load, weather data, and stock prices highlight the efficacy of exponential smoothing of the hidden state for multi-step time series forecasting.
arXiv Detail & Related papers (2020-04-09T17:53:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.