Dense Video Object Captioning from Disjoint Supervision
- URL: http://arxiv.org/abs/2306.11729v3
- Date: Mon, 14 Oct 2024 19:28:11 GMT
- Title: Dense Video Object Captioning from Disjoint Supervision
- Authors: Xingyi Zhou, Anurag Arnab, Chen Sun, Cordelia Schmid,
- Abstract summary: We propose a new task and model for dense video object captioning.
This task unifies spatial and temporal localization in video.
We show how our model improves upon a number of strong baselines for this new task.
- Score: 77.47084982558101
- License:
- Abstract: We propose a new task and model for dense video object captioning -- detecting, tracking and captioning trajectories of objects in a video. This task unifies spatial and temporal localization in video, whilst also requiring fine-grained visual understanding that is best described by natural language. We propose a unified model, and demonstrate how our end-to-end approach is more accurate and temporally coherent than a multi-stage pipeline combining state-of-the-art detection, tracking, and captioning models. Moreover, we propose a training strategy based on a mixture of disjoint tasks, which allows us to leverage diverse, large-scale datasets which supervise different parts of our model. Although each pretraining task only provides weak supervision, they are complementary and, when combined, result in noteworthy zero-shot ability and serve as strong initialization for additional finetuning to further improve accuracy. We carefully design new metrics capturing all components of our task, and show how we can repurpose existing video grounding datasets (e.g. VidSTG and VLN) for our new task. We show that our model improves upon a number of strong baselines for this new task. Furthermore, we can apply our model to the task of spatial grounding, outperforming prior state-of-the-art on VidSTG and VLN, without explicitly training for it. Code is available at https://github.com/google-research/scenic/tree/main/scenic/projects/densevoc.
Related papers
- Teaching VLMs to Localize Specific Objects from In-context Examples [56.797110842152]
Vision-Language Models (VLMs) have shown remarkable capabilities across diverse visual tasks.
Current VLMs lack a fundamental cognitive ability: learning to localize objects in a scene by taking into account the context.
This work is the first to explore and benchmark personalized few-shot localization for VLMs.
arXiv Detail & Related papers (2024-11-20T13:34:22Z) - Open-Vocabulary Spatio-Temporal Action Detection [59.91046192096296]
Open-vocabulary-temporal action detection (OV-STAD) is an important fine-grained video understanding task.
OV-STAD requires training a model on a limited set of base classes with box and label supervision.
To better adapt the holistic VLM for the fine-grained action detection task, we carefully fine-tune it on the localized video region-text pairs.
arXiv Detail & Related papers (2024-05-17T14:52:47Z) - TaskCLIP: Extend Large Vision-Language Model for Task Oriented Object Detection [23.73648235283315]
Task-oriented object detection aims to find objects suitable for accomplishing specific tasks.
Recent solutions are mainly all-in-one models.
We propose TaskCLIP, a more natural two-stage design composed of general object detection and task-guided object selection.
arXiv Detail & Related papers (2024-03-12T22:33:02Z) - Helping Hands: An Object-Aware Ego-Centric Video Recognition Model [60.350851196619296]
We introduce an object-aware decoder for improving the performance of ego-centric representations on ego-centric videos.
We show that the model can act as a drop-in replacement for an ego-awareness video model to improve performance through visual-text grounding.
arXiv Detail & Related papers (2023-08-15T17:58:11Z) - Look, Remember and Reason: Grounded reasoning in videos with language
models [5.3445140425713245]
Multi-temporal language models (LM) have recently shown promising performance in high-level reasoning tasks on videos.
We propose training an LM end-to-end on low-level surrogate tasks, including object detection, re-identification, tracking, to endow the model with the required low-level visual capabilities.
We demonstrate the effectiveness of our framework on diverse visual reasoning tasks from the ACRE, CATER, Something-Else and STAR datasets.
arXiv Detail & Related papers (2023-06-30T16:31:14Z) - Tracking through Containers and Occluders in the Wild [32.86030395660071]
We introduce $textbfTCOW$, a new benchmark and model for visual tracking through heavy occlusion and containment.
We create a mixture of synthetic and annotated real datasets to support both supervised learning and structured evaluation of model performance.
We evaluate two recent transformer-based video models and find that while they can be surprisingly capable of tracking targets under certain settings of task variation, there remains a considerable performance gap before we can claim a tracking model to have acquired a true notion of object permanence.
arXiv Detail & Related papers (2023-05-04T17:59:58Z) - STOA-VLP: Spatial-Temporal Modeling of Object and Action for
Video-Language Pre-training [30.16501510589718]
We propose a pre-training framework that jointly models object and action information across spatial and temporal dimensions.
We design two auxiliary tasks to better incorporate both kinds of information into the pre-training process of the video-language model.
arXiv Detail & Related papers (2023-02-20T03:13:45Z) - Unifying Tracking and Image-Video Object Detection [54.91658924277527]
TrIVD (Tracking and Image-Video Detection) is the first framework that unifies image OD, video OD, and MOT within one end-to-end model.
To handle the discrepancies and semantic overlaps of category labels, TrIVD formulates detection/tracking as grounding and reasons about object categories.
arXiv Detail & Related papers (2022-11-20T20:30:28Z) - PreViTS: Contrastive Pretraining with Video Tracking Supervision [53.73237606312024]
PreViTS is an unsupervised SSL framework for selecting clips containing the same object.
PreViTS spatially constrains the frame regions to learn from and trains the model to locate meaningful objects.
We train a momentum contrastive (MoCo) encoder on VGG-Sound and Kinetics-400 datasets with PreViTS.
arXiv Detail & Related papers (2021-12-01T19:49:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.