An Overview of Catastrophic AI Risks
- URL: http://arxiv.org/abs/2306.12001v6
- Date: Mon, 9 Oct 2023 22:57:01 GMT
- Title: An Overview of Catastrophic AI Risks
- Authors: Dan Hendrycks, Mantas Mazeika, Thomas Woodside
- Abstract summary: This paper provides an overview of the main sources of catastrophic AI risks, which we organize into four categories.
Malicious use, in which individuals or groups intentionally use AIs to cause harm; AI race, in which competitive environments compel actors to deploy unsafe AIs or cede control to AIs.
organizational risks, highlighting how human factors and complex systems can increase the chances of catastrophic accidents.
rogue AIs, describing the inherent difficulty in controlling agents far more intelligent than humans.
- Score: 38.84933208563934
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Rapid advancements in artificial intelligence (AI) have sparked growing
concerns among experts, policymakers, and world leaders regarding the potential
for increasingly advanced AI systems to pose catastrophic risks. Although
numerous risks have been detailed separately, there is a pressing need for a
systematic discussion and illustration of the potential dangers to better
inform efforts to mitigate them. This paper provides an overview of the main
sources of catastrophic AI risks, which we organize into four categories:
malicious use, in which individuals or groups intentionally use AIs to cause
harm; AI race, in which competitive environments compel actors to deploy unsafe
AIs or cede control to AIs; organizational risks, highlighting how human
factors and complex systems can increase the chances of catastrophic accidents;
and rogue AIs, describing the inherent difficulty in controlling agents far
more intelligent than humans. For each category of risk, we describe specific
hazards, present illustrative stories, envision ideal scenarios, and propose
practical suggestions for mitigating these dangers. Our goal is to foster a
comprehensive understanding of these risks and inspire collective and proactive
efforts to ensure that AIs are developed and deployed in a safe manner.
Ultimately, we hope this will allow us to realize the benefits of this powerful
technology while minimizing the potential for catastrophic outcomes.
Related papers
- Imagining and building wise machines: The centrality of AI metacognition [78.76893632793497]
We argue that shortcomings stem from one overarching failure: AI systems lack wisdom.
While AI research has focused on task-level strategies, metacognition is underdeveloped in AI systems.
We propose that integrating metacognitive capabilities into AI systems is crucial for enhancing their robustness, explainability, cooperation, and safety.
arXiv Detail & Related papers (2024-11-04T18:10:10Z) - Risks and Opportunities of Open-Source Generative AI [64.86989162783648]
Applications of Generative AI (Gen AI) are expected to revolutionize a number of different areas, ranging from science & medicine to education.
The potential for these seismic changes has triggered a lively debate about the potential risks of the technology, and resulted in calls for tighter regulation.
This regulation is likely to put at risk the budding field of open-source generative AI.
arXiv Detail & Related papers (2024-05-14T13:37:36Z) - Near to Mid-term Risks and Opportunities of Open-Source Generative AI [94.06233419171016]
Applications of Generative AI are expected to revolutionize a number of different areas, ranging from science & medicine to education.
The potential for these seismic changes has triggered a lively debate about potential risks and resulted in calls for tighter regulation.
This regulation is likely to put at risk the budding field of open-source Generative AI.
arXiv Detail & Related papers (2024-04-25T21:14:24Z) - Control Risk for Potential Misuse of Artificial Intelligence in Science [85.91232985405554]
We aim to raise awareness of the dangers of AI misuse in science.
We highlight real-world examples of misuse in chemical science.
We propose a system called SciGuard to control misuse risks for AI models in science.
arXiv Detail & Related papers (2023-12-11T18:50:57Z) - Managing extreme AI risks amid rapid progress [171.05448842016125]
We describe risks that include large-scale social harms, malicious uses, and irreversible loss of human control over autonomous AI systems.
There is a lack of consensus about how exactly such risks arise, and how to manage them.
Present governance initiatives lack the mechanisms and institutions to prevent misuse and recklessness, and barely address autonomous systems.
arXiv Detail & Related papers (2023-10-26T17:59:06Z) - AI Hazard Management: A framework for the systematic management of root
causes for AI risks [0.0]
This paper introduces the AI Hazard Management (AIHM) framework.
It provides a structured process to systematically identify, assess, and treat AI hazards.
It builds upon an AI hazard list from a comprehensive state-of-the-art analysis.
arXiv Detail & Related papers (2023-10-25T15:55:50Z) - A Brief Overview of AI Governance for Responsible Machine Learning
Systems [3.222802562733787]
This position paper seeks to present a brief introduction to AI governance, which is a framework designed to oversee the responsible use of AI.
Due to the probabilistic nature of AI, the risks associated with it are far greater than traditional technologies.
arXiv Detail & Related papers (2022-11-21T23:48:51Z) - X-Risk Analysis for AI Research [24.78742908726579]
We provide a guide for how to analyze AI x-risk.
First, we review how systems can be made safer today.
Next, we discuss strategies for having long-term impacts on the safety of future systems.
arXiv Detail & Related papers (2022-06-13T00:22:50Z) - Understanding and Avoiding AI Failures: A Practical Guide [0.6526824510982799]
We create a framework for understanding the risks associated with AI applications.
We also use AI safety principles to quantify the unique risks of increased intelligence and human-like qualities in AI.
arXiv Detail & Related papers (2021-04-22T17:05:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.