GADBench: Revisiting and Benchmarking Supervised Graph Anomaly Detection
- URL: http://arxiv.org/abs/2306.12251v2
- Date: Thu, 16 Nov 2023 14:05:25 GMT
- Title: GADBench: Revisiting and Benchmarking Supervised Graph Anomaly Detection
- Authors: Jianheng Tang, Fengrui Hua, Ziqi Gao, Peilin Zhao, Jia Li
- Abstract summary: GADBench is a benchmark tool dedicated to supervised anomalous node detection in static graphs.
Our main finding is that tree ensembles with simple neighborhood aggregation can outperform the latest GNNs tailored for the GAD task.
- Score: 44.501646702560635
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With a long history of traditional Graph Anomaly Detection (GAD) algorithms
and recently popular Graph Neural Networks (GNNs), it is still not clear (1)
how they perform under a standard comprehensive setting, (2) whether GNNs can
outperform traditional algorithms such as tree ensembles, and (3) how about
their efficiency on large-scale graphs. In response, we introduce GADBench -- a
benchmark tool dedicated to supervised anomalous node detection in static
graphs. GADBench facilitates a detailed comparison across 29 distinct models on
ten real-world GAD datasets, encompassing thousands to millions ($\sim$6M)
nodes. Our main finding is that tree ensembles with simple neighborhood
aggregation can outperform the latest GNNs tailored for the GAD task. We shed
light on the current progress of GAD, setting a robust groundwork for
subsequent investigations in this domain. GADBench is open-sourced at
https://github.com/squareRoot3/GADBench.
Related papers
- Diffusing to the Top: Boost Graph Neural Networks with Minimal Hyperparameter Tuning [33.948899558876604]
This work introduces a graph-conditioned latent diffusion framework (GNN-Diff) to generate high-performing GNNs.
We validate our method through 166 experiments across four graph tasks: node classification on small, large, and long-range graphs, as well as link prediction.
arXiv Detail & Related papers (2024-10-08T05:27:34Z) - Spectral Greedy Coresets for Graph Neural Networks [61.24300262316091]
The ubiquity of large-scale graphs in node-classification tasks hinders the real-world applications of Graph Neural Networks (GNNs)
This paper studies graph coresets for GNNs and avoids the interdependence issue by selecting ego-graphs based on their spectral embeddings.
Our spectral greedy graph coreset (SGGC) scales to graphs with millions of nodes, obviates the need for model pre-training, and applies to low-homophily graphs.
arXiv Detail & Related papers (2024-05-27T17:52:12Z) - T-GAE: Transferable Graph Autoencoder for Network Alignment [79.89704126746204]
T-GAE is a graph autoencoder framework that leverages transferability and stability of GNNs to achieve efficient network alignment without retraining.
Our experiments demonstrate that T-GAE outperforms the state-of-the-art optimization method and the best GNN approach by up to 38.7% and 50.8%, respectively.
arXiv Detail & Related papers (2023-10-05T02:58:29Z) - Geodesic Graph Neural Network for Efficient Graph Representation
Learning [34.047527874184134]
We propose an efficient GNN framework called Geodesic GNN (GDGNN)
It injects conditional relationships between nodes into the model without labeling.
Conditioned on the geodesic representations, GDGNN is able to generate node, link, and graph representations that carry much richer structural information than plain GNNs.
arXiv Detail & Related papers (2022-10-06T02:02:35Z) - Deep Graph-level Anomaly Detection by Glocal Knowledge Distillation [61.39364567221311]
Graph-level anomaly detection (GAD) describes the problem of detecting graphs that are abnormal in their structure and/or the features of their nodes.
One of the challenges in GAD is to devise graph representations that enable the detection of both locally- and globally-anomalous graphs.
We introduce a novel deep anomaly detection approach for GAD that learns rich global and local normal pattern information by joint random distillation of graph and node representations.
arXiv Detail & Related papers (2021-12-19T05:04:53Z) - A Unified Lottery Ticket Hypothesis for Graph Neural Networks [82.31087406264437]
We present a unified GNN sparsification (UGS) framework that simultaneously prunes the graph adjacency matrix and the model weights.
We further generalize the popular lottery ticket hypothesis to GNNs for the first time, by defining a graph lottery ticket (GLT) as a pair of core sub-dataset and sparse sub-network.
arXiv Detail & Related papers (2021-02-12T21:52:43Z) - Boost then Convolve: Gradient Boosting Meets Graph Neural Networks [6.888700669980625]
We show that gradient boosted decision trees (GBDT) often outperform other machine learning methods when faced with heterogeneous data.
We propose a novel architecture that trains GBDT and GNN jointly to get the best of both worlds.
Our model benefits from end-to-end optimization by allowing new trees to fit the gradient updates of GNN.
arXiv Detail & Related papers (2021-01-21T10:46:41Z) - Distance Encoding: Design Provably More Powerful Neural Networks for
Graph Representation Learning [63.97983530843762]
Graph Neural Networks (GNNs) have achieved great success in graph representation learning.
GNNs generate identical representations for graph substructures that may in fact be very different.
More powerful GNNs, proposed recently by mimicking higher-order tests, are inefficient as they cannot sparsity of underlying graph structure.
We propose Distance Depiction (DE) as a new class of graph representation learning.
arXiv Detail & Related papers (2020-08-31T23:15:40Z) - Graph Random Neural Network for Semi-Supervised Learning on Graphs [36.218650686748546]
We study the problem of semi-supervised learning on graphs, for which graph neural networks (GNNs) have been extensively explored.
Most existing GNNs inherently suffer from the limitations of over-smoothing, non-robustness, and weak-generalization when labeled nodes are scarce.
In this paper, we propose a simple yet effective framework -- GRAPH R NEURAL NETWORKS (GRAND) -- to address these issues.
arXiv Detail & Related papers (2020-05-22T09:40:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.