Resilient Sparse Array Radar with the Aid of Deep Learning
- URL: http://arxiv.org/abs/2306.12285v1
- Date: Wed, 21 Jun 2023 14:13:56 GMT
- Title: Resilient Sparse Array Radar with the Aid of Deep Learning
- Authors: Aya Mostafa Ahmed, Udaya S.K.P. Miriya Thanthrige, Aydin Sezgin and
Fulvio Gini
- Abstract summary: We propose two machine learning (ML) methods to mitigate the effect of sensor failures and maintain the direction of arrival (DOA) estimation performance and resolution.
The first method enhances the conventional spatial smoothing using deep neural network (DNN), while the second one is an end-to-end data-driven method.
Numerical results show that both approaches can significantly improve the performance of MRA with two failed sensors.
- Score: 13.379837737029085
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we address the problem of direction of arrival (DOA)
estimation for multiple targets in the presence of sensor failures in a sparse
array. Generally, sparse arrays are known with very high-resolution
capabilities, where N physical sensors can resolve up to $\mathcal{O}(N^2)$
uncorrelated sources. However, among the many configurations introduced in the
literature, the arrays that provide the largest hole-free co-array are the most
susceptible to sensor failures. We propose here two machine learning (ML)
methods to mitigate the effect of sensor failures and maintain the DOA
estimation performance and resolution. The first method enhances the
conventional spatial smoothing using deep neural network (DNN), while the
second one is an end-to-end data-driven method. Numerical results show that
both approaches can significantly improve the performance of MRA with two
failed sensors. The data-driven method can maintain the performance of the
array with no failures at high signal-tonoise ratio (SNR). Moreover, both
approaches can even perform better than the original array at low SNR thanks to
the denoising effect of the proposed DNN
Related papers
- DM3D: Distortion-Minimized Weight Pruning for Lossless 3D Object Detection [42.07920565812081]
We propose a novel post-training weight pruning scheme for 3D object detection.
It determines redundant parameters in the pretrained model that lead to minimal distortion in both locality and confidence.
This framework aims to minimize detection distortion of network output to maximally maintain detection precision.
arXiv Detail & Related papers (2024-07-02T09:33:32Z) - SIRST-5K: Exploring Massive Negatives Synthesis with Self-supervised
Learning for Robust Infrared Small Target Detection [53.19618419772467]
Single-frame infrared small target (SIRST) detection aims to recognize small targets from clutter backgrounds.
With the development of Transformer, the scale of SIRST models is constantly increasing.
With a rich diversity of infrared small target data, our algorithm significantly improves the model performance and convergence speed.
arXiv Detail & Related papers (2024-03-08T16:14:54Z) - Small Object Detection via Coarse-to-fine Proposal Generation and
Imitation Learning [52.06176253457522]
We propose a two-stage framework tailored for small object detection based on the Coarse-to-fine pipeline and Feature Imitation learning.
CFINet achieves state-of-the-art performance on the large-scale small object detection benchmarks, SODA-D and SODA-A.
arXiv Detail & Related papers (2023-08-18T13:13:09Z) - Detecting Rotated Objects as Gaussian Distributions and Its 3-D
Generalization [81.29406957201458]
Existing detection methods commonly use a parameterized bounding box (BBox) to model and detect (horizontal) objects.
We argue that such a mechanism has fundamental limitations in building an effective regression loss for rotation detection.
We propose to model the rotated objects as Gaussian distributions.
We extend our approach from 2-D to 3-D with a tailored algorithm design to handle the heading estimation.
arXiv Detail & Related papers (2022-09-22T07:50:48Z) - Towards Lossless ANN-SNN Conversion under Ultra-Low Latency with Dual-Phase Optimization [30.098268054714048]
Spiking neural networks (SNNs) operating with asynchronous discrete events show higher energy efficiency with sparse computation.
A popular approach for implementing deep SNNs is ANN-SNN conversion combining both efficient training of ANNs and efficient inference of SNNs.
In this paper, we first identify that such performance degradation stems from the misrepresentation of the negative or overflow residual membrane potential in SNNs.
Inspired by this, we decompose the conversion error into three parts: quantization error, clipping error, and residual membrane potential representation error.
arXiv Detail & Related papers (2022-05-16T06:53:14Z) - SALISA: Saliency-based Input Sampling for Efficient Video Object
Detection [58.22508131162269]
We propose SALISA, a novel non-uniform SALiency-based Input SAmpling technique for video object detection.
We show that SALISA significantly improves the detection of small objects.
arXiv Detail & Related papers (2022-04-05T17:59:51Z) - The KFIoU Loss for Rotated Object Detection [115.334070064346]
In this paper, we argue that one effective alternative is to devise an approximate loss who can achieve trend-level alignment with SkewIoU loss.
Specifically, we model the objects as Gaussian distribution and adopt Kalman filter to inherently mimic the mechanism of SkewIoU.
The resulting new loss called KFIoU is easier to implement and works better compared with exact SkewIoU.
arXiv Detail & Related papers (2022-01-29T10:54:57Z) - Data-Driven Low-Rank Neural Network Compression [8.025818540338518]
We propose a Data-Driven Low-rank (DDLR) method to reduce the number of parameters of pretrained Deep Neural Networks (DNNs)
We show that it is possible to significantly reduce the number of parameters with only a small reduction in classification accuracy.
arXiv Detail & Related papers (2021-07-13T00:10:21Z) - Deep Unfolding of Iteratively Reweighted ADMM for Wireless RF Sensing [22.467957268653077]
We address the detection of material defects inside a layered material structure using compressive sensing based multiple-output (MIMO) wireless radar.
In many scenarios, the number of defects challenging the layered structure can be modeled as a low-rank structure.
arXiv Detail & Related papers (2021-06-07T15:00:33Z) - Random Features for the Neural Tangent Kernel [57.132634274795066]
We propose an efficient feature map construction of the Neural Tangent Kernel (NTK) of fully-connected ReLU network.
We show that dimension of the resulting features is much smaller than other baseline feature map constructions to achieve comparable error bounds both in theory and practice.
arXiv Detail & Related papers (2021-04-03T09:08:12Z) - GEM: Glare or Gloom, I Can Still See You -- End-to-End Multimodal Object
Detector [11.161639542268015]
We propose sensor-aware multi-modal fusion strategies for 2D object detection in harsh-lighting conditions.
Our network learns to estimate the measurement reliability of each sensor modality in the form of scalar weights and masks.
We show that the proposed strategies out-perform the existing state-of-the-art methods on the FLIR-Thermal dataset.
arXiv Detail & Related papers (2021-02-24T14:56:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.