Natural Language Processing in Electronic Health Records in Relation to
Healthcare Decision-making: A Systematic Review
- URL: http://arxiv.org/abs/2306.12834v1
- Date: Thu, 22 Jun 2023 12:10:41 GMT
- Title: Natural Language Processing in Electronic Health Records in Relation to
Healthcare Decision-making: A Systematic Review
- Authors: Elias Hossain, Rajib Rana, Niall Higgins, Jeffrey Soar, Prabal Datta
Barua, Anthony R. Pisani, Ph.D, Kathryn Turner}
- Abstract summary: Natural Language Processing is widely used to extract clinical insights from Electronic Health Records.
Lack of annotated data, automated tools, and other challenges hinder the full utilisation of NLP for EHRs.
Various Machine Learning (ML), Deep Learning (DL) and NLP techniques are studied and compared to understand the limitations and opportunities in this space comprehensively.
- Score: 2.555168694997103
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Background: Natural Language Processing (NLP) is widely used to extract
clinical insights from Electronic Health Records (EHRs). However, the lack of
annotated data, automated tools, and other challenges hinder the full
utilisation of NLP for EHRs. Various Machine Learning (ML), Deep Learning (DL)
and NLP techniques are studied and compared to understand the limitations and
opportunities in this space comprehensively.
Methodology: After screening 261 articles from 11 databases, we included 127
papers for full-text review covering seven categories of articles: 1) medical
note classification, 2) clinical entity recognition, 3) text summarisation, 4)
deep learning (DL) and transfer learning architecture, 5) information
extraction, 6) Medical language translation and 7) other NLP applications. This
study follows the Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA) guidelines.
Result and Discussion: EHR was the most commonly used data type among the
selected articles, and the datasets were primarily unstructured. Various ML and
DL methods were used, with prediction or classification being the most common
application of ML or DL. The most common use cases were: the International
Classification of Diseases, Ninth Revision (ICD-9) classification, clinical
note analysis, and named entity recognition (NER) for clinical descriptions and
research on psychiatric disorders.
Conclusion: We find that the adopted ML models were not adequately assessed.
In addition, the data imbalance problem is quite important, yet we must find
techniques to address this underlining problem. Future studies should address
key limitations in studies, primarily identifying Lupus Nephritis, Suicide
Attempts, perinatal self-harmed and ICD-9 classification.
Related papers
- Diagnostic Reasoning in Natural Language: Computational Model and Application [68.47402386668846]
We investigate diagnostic abductive reasoning (DAR) in the context of language-grounded tasks (NL-DAR)
We propose a novel modeling framework for NL-DAR based on Pearl's structural causal models.
We use the resulting dataset to investigate the human decision-making process in NL-DAR.
arXiv Detail & Related papers (2024-09-09T06:55:37Z) - SemioLLM: Assessing Large Language Models for Semiological Analysis in Epilepsy Research [45.2233252981348]
Large Language Models have shown promising results in their ability to encode general medical knowledge.
We test the ability of state-of-the-art LLMs to leverage their internal knowledge and reasoning for epilepsy diagnosis.
arXiv Detail & Related papers (2024-07-03T11:02:12Z) - De-identification of clinical free text using natural language
processing: A systematic review of current approaches [48.343430343213896]
Natural language processing has repeatedly demonstrated its feasibility in automating the de-identification process.
Our study aims to provide systematic evidence on how the de-identification of clinical free text has evolved in the last thirteen years.
arXiv Detail & Related papers (2023-11-28T13:20:41Z) - Development and validation of a natural language processing algorithm to
pseudonymize documents in the context of a clinical data warehouse [53.797797404164946]
The study highlights the difficulties faced in sharing tools and resources in this domain.
We annotated a corpus of clinical documents according to 12 types of identifying entities.
We build a hybrid system, merging the results of a deep learning model as well as manual rules.
arXiv Detail & Related papers (2023-03-23T17:17:46Z) - Few-Shot Cross-lingual Transfer for Coarse-grained De-identification of
Code-Mixed Clinical Texts [56.72488923420374]
Pre-trained language models (LMs) have shown great potential for cross-lingual transfer in low-resource settings.
We show the few-shot cross-lingual transfer property of LMs for named recognition (NER) and apply it to solve a low-resource and real-world challenge of code-mixed (Spanish-Catalan) clinical notes de-identification in the stroke.
arXiv Detail & Related papers (2022-04-10T21:46:52Z) - Towards Structuring Real-World Data at Scale: Deep Learning for
Extracting Key Oncology Information from Clinical Text with Patient-Level
Supervision [10.929271646369887]
The majority of detailed patient information in real-world data (RWD) is only consistently available in free-text clinical documents.
Traditional rule-based systems are vulnerable to the prevalent linguistic variations and ambiguities in clinical text.
We propose leveraging patient-level supervision from medical registries, which are often readily available and capture key patient information.
arXiv Detail & Related papers (2022-03-20T03:42:03Z) - A Scoping Review of Publicly Available Language Tasks in Clinical
Natural Language Processing [7.966218734325912]
We searched six databases, including biomedical research and computer science literature database.
A total of 35 papers with 47 clinical NLP tasks met inclusion criteria between 2007 and 2021.
arXiv Detail & Related papers (2021-12-07T22:49:58Z) - CBLUE: A Chinese Biomedical Language Understanding Evaluation Benchmark [51.38557174322772]
We present the first Chinese Biomedical Language Understanding Evaluation benchmark.
It is a collection of natural language understanding tasks including named entity recognition, information extraction, clinical diagnosis normalization, single-sentence/sentence-pair classification.
We report empirical results with the current 11 pre-trained Chinese models, and experimental results show that state-of-the-art neural models perform by far worse than the human ceiling.
arXiv Detail & Related papers (2021-06-15T12:25:30Z) - Active learning for medical code assignment [55.99831806138029]
We demonstrate the effectiveness of Active Learning (AL) in multi-label text classification in the clinical domain.
We apply a set of well-known AL methods to help automatically assign ICD-9 codes on the MIMIC-III dataset.
Our results show that the selection of informative instances provides satisfactory classification with a significantly reduced training set.
arXiv Detail & Related papers (2021-04-12T18:11:17Z) - A Systematic Review of Natural Language Processing Applied to Radiology
Reports [3.600747505433814]
This study systematically assesses recent literature in NLP applied to radiology reports.
Our analysis is based on 21 variables including radiology characteristics, NLP methodology, performance, study, and clinical application characteristics.
arXiv Detail & Related papers (2021-02-18T18:54:41Z) - Artificial Intelligence, speech and language processing approaches to
monitoring Alzheimer's Disease: a systematic review [5.635607414700482]
This paper summarises current findings on the use of artificial intelligence, speech and language processing to predict cognitive decline in Alzheimer's Disease.
We conducted a systematic review of original research between 2000 and 2019 registered in PROSPERO.
arXiv Detail & Related papers (2020-10-12T21:43:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.