Instance-Optimal Cluster Recovery in the Labeled Stochastic Block Model
- URL: http://arxiv.org/abs/2306.12968v1
- Date: Sun, 18 Jun 2023 08:46:06 GMT
- Title: Instance-Optimal Cluster Recovery in the Labeled Stochastic Block Model
- Authors: Kaito Ariu, Alexandre Proutiere, Se-Young Yun
- Abstract summary: We devise an efficient algorithm that recovers clusters using the observed labels.
We present Instance-Adaptive Clustering (IAC), the first algorithm whose performance matches these lower bounds both in expectation and with high probability.
- Score: 79.46465138631592
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider the problem of recovering hidden communities in the Labeled
Stochastic Block Model (LSBM) with a finite number of clusters, where cluster
sizes grow linearly with the total number $n$ of items. In the LSBM, a label is
(independently) observed for each pair of items. Our objective is to devise an
efficient algorithm that recovers clusters using the observed labels. To this
end, we revisit instance-specific lower bounds on the expected number of
misclassified items satisfied by any clustering algorithm. We present
Instance-Adaptive Clustering (IAC), the first algorithm whose performance
matches these lower bounds both in expectation and with high probability. IAC
consists of a one-time spectral clustering algorithm followed by an iterative
likelihood-based cluster assignment improvement. This approach is based on the
instance-specific lower bound and does not require any model parameters,
including the number of clusters. By performing the spectral clustering only
once, IAC maintains an overall computational complexity of $\mathcal{O}(n
\text{polylog}(n))$. We illustrate the effectiveness of our approach through
numerical experiments.
Related papers
- Self-Supervised Graph Embedding Clustering [70.36328717683297]
K-means one-step dimensionality reduction clustering method has made some progress in addressing the curse of dimensionality in clustering tasks.
We propose a unified framework that integrates manifold learning with K-means, resulting in the self-supervised graph embedding framework.
arXiv Detail & Related papers (2024-09-24T08:59:51Z) - A Computational Theory and Semi-Supervised Algorithm for Clustering [0.0]
A semi-supervised clustering algorithm is presented.
The kernel of the clustering method is Mohammad's anomaly detection algorithm.
Results are presented on synthetic and realworld data sets.
arXiv Detail & Related papers (2023-06-12T09:15:58Z) - Convex Clustering through MM: An Efficient Algorithm to Perform
Hierarchical Clustering [1.0589208420411012]
We propose convex clustering through majorization-minimization ( CCMM) -- an iterative algorithm that uses cluster fusions and a highly efficient updating scheme.
With a current desktop computer, CCMM efficiently solves convex clustering problems featuring over one million objects in seven-dimensional space.
arXiv Detail & Related papers (2022-11-03T15:07:51Z) - Recovering Unbalanced Communities in the Stochastic Block Model With
Application to Clustering with a Faulty Oracle [9.578056676899203]
oracle block model (SBM) is a fundamental model for studying graph clustering or community detection in networks.
We provide a simple SVD-based algorithm for recovering the communities in the SBM with communities of varying sizes.
arXiv Detail & Related papers (2022-02-17T08:51:19Z) - Lattice-Based Methods Surpass Sum-of-Squares in Clustering [98.46302040220395]
Clustering is a fundamental primitive in unsupervised learning.
Recent work has established lower bounds against the class of low-degree methods.
We show that, perhaps surprisingly, this particular clustering model textitdoes not exhibit a statistical-to-computational gap.
arXiv Detail & Related papers (2021-12-07T18:50:17Z) - Self-supervised Contrastive Attributed Graph Clustering [110.52694943592974]
We propose a novel attributed graph clustering network, namely Self-supervised Contrastive Attributed Graph Clustering (SCAGC)
In SCAGC, by leveraging inaccurate clustering labels, a self-supervised contrastive loss, are designed for node representation learning.
For the OOS nodes, SCAGC can directly calculate their clustering labels.
arXiv Detail & Related papers (2021-10-15T03:25:28Z) - You Never Cluster Alone [150.94921340034688]
We extend the mainstream contrastive learning paradigm to a cluster-level scheme, where all the data subjected to the same cluster contribute to a unified representation.
We define a set of categorical variables as clustering assignment confidence, which links the instance-level learning track with the cluster-level one.
By reparametrizing the assignment variables, TCC is trained end-to-end, requiring no alternating steps.
arXiv Detail & Related papers (2021-06-03T14:59:59Z) - Scalable Hierarchical Agglomerative Clustering [65.66407726145619]
Existing scalable hierarchical clustering methods sacrifice quality for speed.
We present a scalable, agglomerative method for hierarchical clustering that does not sacrifice quality and scales to billions of data points.
arXiv Detail & Related papers (2020-10-22T15:58:35Z) - Exact Recovery of Mangled Clusters with Same-Cluster Queries [20.03712152278538]
We study the cluster recovery problem in the semi-supervised active clustering framework.
We design an algorithm that, given $n$ points to be partitioned into $k$ clusters, uses $O(k3 ln k ln n)$ oracle queries and $tildeO(kn + k3)$ time to recover the clustering with zero misclassification error.
arXiv Detail & Related papers (2020-06-08T15:27:58Z) - Bi-objective Optimization of Biclustering with Binary Data [0.0]
Clustering consists of partitioning data objects into subsets called clusters according to some similarity criteria.
This paper addresses a quasi-clustering that allows overlapping of clusters, and which we link to biclustering.
Biclustering simultaneously groups the objects and features so that a specific group of objects has a special group of features.
arXiv Detail & Related papers (2020-02-09T21:49:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.