PromptIR: Prompting for All-in-One Blind Image Restoration
- URL: http://arxiv.org/abs/2306.13090v1
- Date: Thu, 22 Jun 2023 17:59:52 GMT
- Title: PromptIR: Prompting for All-in-One Blind Image Restoration
- Authors: Vaishnav Potlapalli, Syed Waqas Zamir, Salman Khan, Fahad Shahbaz Khan
- Abstract summary: We present a prompt-based learning approach, PromptIR, for All-In-One image restoration.
Our method uses prompts to encode degradation-specific information, which is then used to dynamically guide the restoration network.
PromptIR offers a generic and efficient plugin module with few lightweight prompts.
- Score: 64.02374293256001
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Image restoration involves recovering a high-quality clean image from its
degraded version. Deep learning-based methods have significantly improved image
restoration performance, however, they have limited generalization ability to
different degradation types and levels. This restricts their real-world
application since it requires training individual models for each specific
degradation and knowing the input degradation type to apply the relevant model.
We present a prompt-based learning approach, PromptIR, for All-In-One image
restoration that can effectively restore images from various types and levels
of degradation. In particular, our method uses prompts to encode
degradation-specific information, which is then used to dynamically guide the
restoration network. This allows our method to generalize to different
degradation types and levels, while still achieving state-of-the-art results on
image denoising, deraining, and dehazing. Overall, PromptIR offers a generic
and efficient plugin module with few lightweight prompts that can be used to
restore images of various types and levels of degradation with no prior
information on the corruptions present in the image. Our code and pretrained
models are available here: https://github.com/va1shn9v/PromptIR
Related papers
- UIR-LoRA: Achieving Universal Image Restoration through Multiple Low-Rank Adaptation [50.27688690379488]
Existing unified methods treat multi-degradation image restoration as a multi-task learning problem.
We propose a universal image restoration framework based on multiple low-rank adapters (LoRA) from multi-domain transfer learning.
Our framework leverages the pre-trained generative model as the shared component for multi-degradation restoration and transfers it to specific degradation image restoration tasks.
arXiv Detail & Related papers (2024-09-30T11:16:56Z) - Review Learning: Advancing All-in-One Ultra-High-Definition Image Restoration Training Method [7.487270862599671]
We propose a new training paradigm for general image restoration models, which we name bfReview Learning.
This approach begins with sequential training of an image restoration model on several degraded datasets, combined with a review mechanism.
We design a lightweight all-purpose image restoration network that can efficiently reason about degraded images with 4K resolution on a single consumer-grade GPU.
arXiv Detail & Related papers (2024-08-13T08:08:45Z) - Diff-Restorer: Unleashing Visual Prompts for Diffusion-based Universal Image Restoration [19.87693298262894]
We propose Diff-Restorer, a universal image restoration method based on the diffusion model.
We utilize the pre-trained visual language model to extract visual prompts from degraded images.
We also design a Degradation-aware Decoder to perform structural correction and convert the latent code to the pixel domain.
arXiv Detail & Related papers (2024-07-04T05:01:10Z) - AdaIR: Adaptive All-in-One Image Restoration via Frequency Mining and Modulation [99.57024606542416]
We propose an adaptive all-in-one image restoration network based on frequency mining and modulation.
Our approach is motivated by the observation that different degradation types impact the image content on different frequency subbands.
The proposed model achieves adaptive reconstruction by accentuating the informative frequency subbands according to different input degradations.
arXiv Detail & Related papers (2024-03-21T17:58:14Z) - InstructIR: High-Quality Image Restoration Following Human Instructions [61.1546287323136]
We present the first approach that uses human-written instructions to guide the image restoration model.
Our method, InstructIR, achieves state-of-the-art results on several restoration tasks.
arXiv Detail & Related papers (2024-01-29T18:53:33Z) - Improving Image Restoration through Removing Degradations in Textual
Representations [60.79045963573341]
We introduce a new perspective for improving image restoration by removing degradation in the textual representations of a degraded image.
To address the cross-modal assistance, we propose to map the degraded images into textual representations for removing the degradations.
In particular, We ingeniously embed an image-to-text mapper and text restoration module into CLIP-equipped text-to-image models to generate the guidance.
arXiv Detail & Related papers (2023-12-28T19:18:17Z) - Prompt-In-Prompt Learning for Universal Image Restoration [38.81186629753392]
We propose novel Prompt-In-Prompt learning for universal image restoration, named PIP.
We present two novel prompts, a degradation-aware prompt to encode high-level degradation knowledge and a basic restoration prompt to provide essential low-level information.
By doing so, the resultant PIP works as a plug-and-play module to enhance existing restoration models for universal image restoration.
arXiv Detail & Related papers (2023-12-08T13:36:01Z) - ProRes: Exploring Degradation-aware Visual Prompt for Universal Image
Restoration [46.87227160492818]
We present Degradation-aware Visual Prompts, which encode various types of image degradation into unified visual prompts.
These degradation-aware prompts provide control over image processing and allow weighted combinations for customized image restoration.
We then leverage degradation-aware visual prompts to establish a controllable universal model for image restoration.
arXiv Detail & Related papers (2023-06-23T17:59:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.