Exploring AI-enhanced Shared Control for an Assistive Robotic Arm
- URL: http://arxiv.org/abs/2306.13509v3
- Date: Thu, 18 Jul 2024 15:25:08 GMT
- Title: Exploring AI-enhanced Shared Control for an Assistive Robotic Arm
- Authors: Max Pascher, Kirill Kronhardt, Jan Freienstein, Jens Gerken,
- Abstract summary: In particular, we explore how Artifical Intelligence (AI) can be integrated into a shared control paradigm.
In particular, we focus on the consequential requirements for the interface between human and robot.
- Score: 4.999814847776098
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Assistive technologies and in particular assistive robotic arms have the potential to enable people with motor impairments to live a self-determined life. More and more of these systems have become available for end users in recent years, such as the Kinova Jaco robotic arm. However, they mostly require complex manual control, which can overwhelm users. As a result, researchers have explored ways to let such robots act autonomously. However, at least for this specific group of users, such an approach has shown to be futile. Here, users want to stay in control to achieve a higher level of personal autonomy, to which an autonomous robot runs counter. In our research, we explore how Artifical Intelligence (AI) can be integrated into a shared control paradigm. In particular, we focus on the consequential requirements for the interface between human and robot and how we can keep humans in the loop while still significantly reducing the mental load and required motor skills.
Related papers
- Unifying 3D Representation and Control of Diverse Robots with a Single Camera [48.279199537720714]
We introduce Neural Jacobian Fields, an architecture that autonomously learns to model and control robots from vision alone.
Our approach achieves accurate closed-loop control and recovers the causal dynamic structure of each robot.
arXiv Detail & Related papers (2024-07-11T17:55:49Z) - LLM Granularity for On-the-Fly Robot Control [3.5015824313818578]
In circumstances where visuals become unreliable or unavailable, can we rely solely on language to control robots?
This work takes the initial steps to answer this question by: 1) evaluating the responses of assistive robots to language prompts of varying granularities; and 2) exploring the necessity and feasibility of controlling the robot on-the-fly.
arXiv Detail & Related papers (2024-06-20T18:17:48Z) - Imagining In-distribution States: How Predictable Robot Behavior Can Enable User Control Over Learned Policies [1.6078134198754157]
We present Imaginary Out-of-Distribution Actions, IODA, an algorithm which empowers users to leverage their expectations of a robot's behavior to accomplish new tasks.
IODA leads to both better task performance and a higher degree of alignment between robot behavior and user expectation.
arXiv Detail & Related papers (2024-06-19T17:08:28Z) - HumanoidBench: Simulated Humanoid Benchmark for Whole-Body Locomotion and Manipulation [50.616995671367704]
We present a high-dimensional, simulated robot learning benchmark, HumanoidBench, featuring a humanoid robot equipped with dexterous hands.
Our findings reveal that state-of-the-art reinforcement learning algorithms struggle with most tasks, whereas a hierarchical learning approach achieves superior performance when supported by robust low-level policies.
arXiv Detail & Related papers (2024-03-15T17:45:44Z) - How to Raise a Robot -- A Case for Neuro-Symbolic AI in Constrained Task
Planning for Humanoid Assistive Robots [4.286794014747407]
We explore the novel field of incorporating privacy, security, and access control constraints with robot task planning approaches.
We report preliminary results on the classical symbolic approach, deep-learned neural networks, and modern ideas using large language models as knowledge base.
arXiv Detail & Related papers (2023-12-14T11:09:50Z) - GenLoco: Generalized Locomotion Controllers for Quadrupedal Robots [87.32145104894754]
We introduce a framework for training generalized locomotion (GenLoco) controllers for quadrupedal robots.
Our framework synthesizes general-purpose locomotion controllers that can be deployed on a large variety of quadrupedal robots.
We show that our models acquire more general control strategies that can be directly transferred to novel simulated and real-world robots.
arXiv Detail & Related papers (2022-09-12T15:14:32Z) - Fleet-DAgger: Interactive Robot Fleet Learning with Scalable Human
Supervision [72.4735163268491]
Commercial and industrial deployments of robot fleets often fall back on remote human teleoperators during execution.
We formalize the Interactive Fleet Learning (IFL) setting, in which multiple robots interactively query and learn from multiple human supervisors.
We propose Fleet-DAgger, a family of IFL algorithms, and compare a novel Fleet-DAgger algorithm to 4 baselines in simulation.
arXiv Detail & Related papers (2022-06-29T01:23:57Z) - Auditing Robot Learning for Safety and Compliance during Deployment [4.742825811314168]
We study how best to audit robot learning algorithms for checking their compatibility with humans.
We believe that this is a challenging problem that will require efforts from the entire robot learning community.
arXiv Detail & Related papers (2021-10-12T02:40:11Z) - OpenBot: Turning Smartphones into Robots [95.94432031144716]
Current robots are either expensive or make significant compromises on sensory richness, computational power, and communication capabilities.
We propose to leverage smartphones to equip robots with extensive sensor suites, powerful computational abilities, state-of-the-art communication channels, and access to a thriving software ecosystem.
We design a small electric vehicle that costs $50 and serves as a robot body for standard Android smartphones.
arXiv Detail & Related papers (2020-08-24T18:04:50Z) - Morphology-Agnostic Visual Robotic Control [76.44045983428701]
MAVRIC is an approach that works with minimal prior knowledge of the robot's morphology.
We demonstrate our method on visually-guided 3D point reaching, trajectory following, and robot-to-robot imitation.
arXiv Detail & Related papers (2019-12-31T15:45:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.