Learning from Pixels with Expert Observations
- URL: http://arxiv.org/abs/2306.13872v2
- Date: Sat, 15 Jul 2023 11:51:23 GMT
- Title: Learning from Pixels with Expert Observations
- Authors: Minh-Huy Hoang, Long Dinh, Hai Nguyen
- Abstract summary: This paper presents a new approach that uses expert observations for learning in robot manipulation tasks with sparse rewards from pixel observations.
Specifically, our technique involves using expert observations as intermediate visual goals for a goal-conditioned RL agent.
We demonstrate the efficacy of our method in five challenging block construction tasks in simulation and show that when combined with two state-of-the-art agents, our approach can significantly improve their performance.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In reinforcement learning (RL), sparse rewards can present a significant
challenge. Fortunately, expert actions can be utilized to overcome this issue.
However, acquiring explicit expert actions can be costly, and expert
observations are often more readily available. This paper presents a new
approach that uses expert observations for learning in robot manipulation tasks
with sparse rewards from pixel observations. Specifically, our technique
involves using expert observations as intermediate visual goals for a
goal-conditioned RL agent, enabling it to complete a task by successively
reaching a series of goals. We demonstrate the efficacy of our method in five
challenging block construction tasks in simulation and show that when combined
with two state-of-the-art agents, our approach can significantly improve their
performance while requiring 4-20 times fewer expert actions during training.
Moreover, our method is also superior to a hierarchical baseline.
Related papers
- Watch Every Step! LLM Agent Learning via Iterative Step-Level Process Refinement [50.481380478458945]
Iterative step-level Process Refinement (IPR) framework provides detailed step-by-step guidance to enhance agent training.
Our experiments on three complex agent tasks demonstrate that our framework outperforms a variety of strong baselines.
arXiv Detail & Related papers (2024-06-17T03:29:13Z) - Inverse Reinforcement Learning with Sub-optimal Experts [56.553106680769474]
We study the theoretical properties of the class of reward functions that are compatible with a given set of experts.
Our results show that the presence of multiple sub-optimal experts can significantly shrink the set of compatible rewards.
We analyze a uniform sampling algorithm that results in being minimax optimal whenever the sub-optimal experts' performance level is sufficiently close to the one of the optimal agent.
arXiv Detail & Related papers (2024-01-08T12:39:25Z) - RLIF: Interactive Imitation Learning as Reinforcement Learning [56.997263135104504]
We show how off-policy reinforcement learning can enable improved performance under assumptions that are similar but potentially even more practical than those of interactive imitation learning.
Our proposed method uses reinforcement learning with user intervention signals themselves as rewards.
This relaxes the assumption that intervening experts in interactive imitation learning should be near-optimal and enables the algorithm to learn behaviors that improve over the potential suboptimal human expert.
arXiv Detail & Related papers (2023-11-21T21:05:21Z) - Imitation from Observation With Bootstrapped Contrastive Learning [12.048166025000976]
Imitation from observation (IfO) is a learning paradigm that consists of training autonomous agents in a Markov Decision Process.
We present BootIfOL, an IfO algorithm that aims to learn a reward function that takes an agent trajectory and compares it to an expert.
We evaluate our approach on a variety of control tasks showing that we can train effective policies using a limited number of demonstrative trajectories.
arXiv Detail & Related papers (2023-02-13T17:32:17Z) - Learning from Guided Play: Improving Exploration for Adversarial
Imitation Learning with Simple Auxiliary Tasks [8.320969283401233]
We show that the standard, naive approach to exploration can manifest as a suboptimal local maximum.
We present Learning from Guided Play (LfGP), a framework in which we leverage expert demonstrations of multiple exploratory, auxiliary tasks.
arXiv Detail & Related papers (2022-12-30T20:38:54Z) - Basis for Intentions: Efficient Inverse Reinforcement Learning using
Past Experience [89.30876995059168]
inverse reinforcement learning (IRL) -- inferring the reward function of an agent from observing its behavior.
This paper addresses the problem of IRL -- inferring the reward function of an agent from observing its behavior.
arXiv Detail & Related papers (2022-08-09T17:29:49Z) - Learning from Guided Play: A Scheduled Hierarchical Approach for
Improving Exploration in Adversarial Imitation Learning [7.51557557629519]
We present Learning from Guided Play (LfGP), a framework in which we leverage expert demonstrations of, in addition to a main task, multiple auxiliary tasks.
This affords many benefits: learning efficiency is improved for main tasks with challenging bottleneck transitions, expert data becomes reusable between tasks, and transfer learning through the reuse of learned auxiliary task models becomes possible.
arXiv Detail & Related papers (2021-12-16T14:58:08Z) - PEBBLE: Feedback-Efficient Interactive Reinforcement Learning via
Relabeling Experience and Unsupervised Pre-training [94.87393610927812]
We present an off-policy, interactive reinforcement learning algorithm that capitalizes on the strengths of both feedback and off-policy learning.
We demonstrate that our approach is capable of learning tasks of higher complexity than previously considered by human-in-the-loop methods.
arXiv Detail & Related papers (2021-06-09T14:10:50Z) - Planning to Explore via Self-Supervised World Models [120.31359262226758]
Plan2Explore is a self-supervised reinforcement learning agent.
We present a new approach to self-supervised exploration and fast adaptation to new tasks.
Without any training supervision or task-specific interaction, Plan2Explore outperforms prior self-supervised exploration methods.
arXiv Detail & Related papers (2020-05-12T17:59:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.