Comparison of Pre-trained Language Models for Turkish Address Parsing
- URL: http://arxiv.org/abs/2306.13947v1
- Date: Sat, 24 Jun 2023 12:09:43 GMT
- Title: Comparison of Pre-trained Language Models for Turkish Address Parsing
- Authors: Muhammed Cihat \"Unal, Bet\"ul Ayg\"un, Ayd{\i}n Gerek
- Abstract summary: We focus on Turkish maps data and thoroughly evaluate both multilingual and Turkish based BERT, DistilBERT, ELECTRA and RoBERTa.
We also propose a MultiLayer Perceptron (MLP) for fine-tuning BERT in addition to the standard approach of one-layer fine-tuning.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Transformer based pre-trained models such as BERT and its variants, which are
trained on large corpora, have demonstrated tremendous success for natural
language processing (NLP) tasks. Most of academic works are based on the
English language; however, the number of multilingual and language specific
studies increase steadily. Furthermore, several studies claimed that language
specific models outperform multilingual models in various tasks. Therefore, the
community tends to train or fine-tune the models for the language of their case
study, specifically. In this paper, we focus on Turkish maps data and
thoroughly evaluate both multilingual and Turkish based BERT, DistilBERT,
ELECTRA and RoBERTa. Besides, we also propose a MultiLayer Perceptron (MLP) for
fine-tuning BERT in addition to the standard approach of one-layer fine-tuning.
For the dataset, a mid-sized Address Parsing corpus taken with a relatively
high quality is constructed. Conducted experiments on this dataset indicate
that Turkish language specific models with MLP fine-tuning yields slightly
better results when compared to the multilingual fine-tuned models. Moreover,
visualization of address tokens' representations further indicates the
effectiveness of BERT variants for classifying a variety of addresses.
Related papers
- P-MMEval: A Parallel Multilingual Multitask Benchmark for Consistent Evaluation of LLMs [84.24644520272835]
Large language models (LLMs) showcase varied multilingual capabilities across tasks like translation, code generation, and reasoning.
Previous assessments often limited their scope to fundamental natural language processing (NLP) or isolated capability-specific tasks.
We present a pipeline for selecting available and reasonable benchmarks from massive ones, addressing the oversight in previous work regarding the utility of these benchmarks.
We introduce P-MMEval, a large-scale benchmark covering effective fundamental and capability-specialized datasets.
arXiv Detail & Related papers (2024-11-14T01:29:36Z) - Beyond Contrastive Learning: A Variational Generative Model for
Multilingual Retrieval [109.62363167257664]
We propose a generative model for learning multilingual text embeddings.
Our model operates on parallel data in $N$ languages.
We evaluate this method on a suite of tasks including semantic similarity, bitext mining, and cross-lingual question retrieval.
arXiv Detail & Related papers (2022-12-21T02:41:40Z) - LERT: A Linguistically-motivated Pre-trained Language Model [67.65651497173998]
We propose LERT, a pre-trained language model that is trained on three types of linguistic features along with the original pre-training task.
We carried out extensive experiments on ten Chinese NLU tasks, and the experimental results show that LERT could bring significant improvements.
arXiv Detail & Related papers (2022-11-10T05:09:16Z) - Language Models are Few-shot Multilingual Learners [66.11011385895195]
We evaluate the multilingual skills of the GPT and T5 models in conducting multi-class classification on non-English languages.
We show that, given a few English examples as context, pre-trained language models can predict not only English test samples but also non-English ones.
arXiv Detail & Related papers (2021-09-16T03:08:22Z) - HerBERT: Efficiently Pretrained Transformer-based Language Model for
Polish [4.473327661758546]
This paper presents the first ablation study focused on Polish, which, unlike the isolating English language, is a fusional language.
We design and thoroughly evaluate a pretraining procedure of transferring knowledge from multilingual to monolingual BERT-based models.
Based on the proposed procedure, a Polish BERT-based language model -- HerBERT -- is trained.
arXiv Detail & Related papers (2021-05-04T20:16:17Z) - Unsupervised Domain Adaptation of a Pretrained Cross-Lingual Language
Model [58.27176041092891]
Recent research indicates that pretraining cross-lingual language models on large-scale unlabeled texts yields significant performance improvements.
We propose a novel unsupervised feature decomposition method that can automatically extract domain-specific features from the entangled pretrained cross-lingual representations.
Our proposed model leverages mutual information estimation to decompose the representations computed by a cross-lingual model into domain-invariant and domain-specific parts.
arXiv Detail & Related papers (2020-11-23T16:00:42Z) - EstBERT: A Pretrained Language-Specific BERT for Estonian [0.3674863913115431]
This paper presents EstBERT, a large pretrained transformer-based language-specific BERT model for Estonian.
Recent work has evaluated multilingual BERT models on Estonian tasks and found them to outperform the baselines.
We show that the models based on EstBERT outperform multilingual BERT models on five tasks out of six.
arXiv Detail & Related papers (2020-11-09T21:33:53Z) - Comparison of Interactive Knowledge Base Spelling Correction Models for
Low-Resource Languages [81.90356787324481]
Spelling normalization for low resource languages is a challenging task because the patterns are hard to predict.
This work shows a comparison of a neural model and character language models with varying amounts on target language data.
Our usage scenario is interactive correction with nearly zero amounts of training examples, improving models as more data is collected.
arXiv Detail & Related papers (2020-10-20T17:31:07Z) - Evaluating Multilingual BERT for Estonian [0.8057006406834467]
We evaluate four multilingual models -- multilingual BERT, multilingual distilled BERT, XLM and XLM-RoBERTa -- on several NLP tasks.
Our results show that multilingual BERT models can generalise well on different Estonian NLP tasks.
arXiv Detail & Related papers (2020-10-01T14:48:31Z) - ParsBERT: Transformer-based Model for Persian Language Understanding [0.7646713951724012]
This paper proposes a monolingual BERT for the Persian language (ParsBERT)
It shows its state-of-the-art performance compared to other architectures and multilingual models.
ParsBERT obtains higher scores in all datasets, including existing ones as well as composed ones.
arXiv Detail & Related papers (2020-05-26T05:05:32Z) - What the [MASK]? Making Sense of Language-Specific BERT Models [39.54532211263058]
This paper presents the current state of the art in language-specific BERT models.
Our aim is to provide an overview of the commonalities and differences between Language-language-specific BERT models and mBERT models.
arXiv Detail & Related papers (2020-03-05T20:42:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.