Regular SE(3) Group Convolutions for Volumetric Medical Image Analysis
- URL: http://arxiv.org/abs/2306.13960v2
- Date: Thu, 20 Jul 2023 10:26:56 GMT
- Title: Regular SE(3) Group Convolutions for Volumetric Medical Image Analysis
- Authors: Thijs P. Kuipers and Erik J. Bekkers
- Abstract summary: We devise a SE(3) group convolution kernel separated into a continuous SO(3) (rotation) kernel and a spatial kernel.
Our approach achieves up to a 16.5% gain in accuracy over regular CNNs.
- Score: 10.406659081400354
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Regular group convolutional neural networks (G-CNNs) have been shown to
increase model performance and improve equivariance to different geometrical
symmetries. This work addresses the problem of SE(3), i.e., roto-translation
equivariance, on volumetric data. Volumetric image data is prevalent in many
medical settings. Motivated by the recent work on separable group convolutions,
we devise a SE(3) group convolution kernel separated into a continuous SO(3)
(rotation) kernel and a spatial kernel. We approximate equivariance to the
continuous setting by sampling uniform SO(3) grids. Our continuous SO(3) kernel
is parameterized via RBF interpolation on similarly uniform grids. We
demonstrate the advantages of our approach in volumetric medical image
analysis. Our SE(3) equivariant models consistently outperform CNNs and regular
discrete G-CNNs on challenging medical classification tasks and show
significantly improved generalization capabilities. Our approach achieves up to
a 16.5% gain in accuracy over regular CNNs.
Related papers
- 3D Equivariant Pose Regression via Direct Wigner-D Harmonics Prediction [50.07071392673984]
Existing methods learn 3D rotations parametrized in the spatial domain using angles or quaternions.
We propose a frequency-domain approach that directly predicts Wigner-D coefficients for 3D rotation regression.
Our method achieves state-of-the-art results on benchmarks such as ModelNet10-SO(3) and PASCAL3D+.
arXiv Detail & Related papers (2024-11-01T12:50:38Z) - Enhancing lattice kinetic schemes for fluid dynamics with Lattice-Equivariant Neural Networks [79.16635054977068]
We present a new class of equivariant neural networks, dubbed Lattice-Equivariant Neural Networks (LENNs)
Our approach develops within a recently introduced framework aimed at learning neural network-based surrogate models Lattice Boltzmann collision operators.
Our work opens towards practical utilization of machine learning-augmented Lattice Boltzmann CFD in real-world simulations.
arXiv Detail & Related papers (2024-05-22T17:23:15Z) - Weighted Monte Carlo augmented spherical Fourier-Bessel convolutional
layers for 3D abdominal organ segmentation [0.31410859223862103]
Filter-decomposition-based 3D group equivariant neural networks show promising stability and data efficiency for 3D image feature extraction.
This paper describes a non- parameter-sharing affine group equivariant neural network for 3D medical image segmentation.
The efficiency and flexibility of the adopted non- parameter-sharing strategy enable for the first time an efficient implementation of 3D affine group equivariant convolutional neural networks for volumetric data.
arXiv Detail & Related papers (2024-02-26T18:51:15Z) - Higher Order Gauge Equivariant CNNs on Riemannian Manifolds and
Applications [7.322121417864824]
We introduce a higher order generalization of the gauge equivariant convolution, dubbed a gauge equivariant Volterra network (GEVNet)
This allows us to model spatially extended nonlinear interactions within a given field while still maintaining equivariance to global isometries.
In the neuroimaging data experiments, the resulting two-part architecture is used to automatically discriminate between patients with Lewy Body Disease (DLB), Alzheimer's Disease (AD) and Parkinson's Disease (PD) from diffusion magnetic resonance images (dMRI)
arXiv Detail & Related papers (2023-05-26T06:02:31Z) - Leveraging SO(3)-steerable convolutions for pose-robust semantic segmentation in 3D medical data [2.207533492015563]
We present a new family of segmentation networks that use equivariant voxel convolutions based on spherical harmonics.
These networks are robust to data poses not seen during training, and do not require rotation-based data augmentation during training.
We demonstrate improved segmentation performance in MRI brain tumor and healthy brain structure segmentation tasks.
arXiv Detail & Related papers (2023-03-01T09:27:08Z) - Deep Diversity-Enhanced Feature Representation of Hyperspectral Images [87.47202258194719]
We rectify 3D convolution by modifying its topology to enhance the rank upper-bound.
We also propose a novel diversity-aware regularization (DA-Reg) term that acts on the feature maps to maximize independence among elements.
To demonstrate the superiority of the proposed Re$3$-ConvSet and DA-Reg, we apply them to various HS image processing and analysis tasks.
arXiv Detail & Related papers (2023-01-15T16:19:18Z) - Moving Frame Net: SE(3)-Equivariant Network for Volumes [0.0]
A rotation and translation equivariant neural network for image data was proposed based on the moving frames approach.
We significantly improve that approach by reducing the computation of moving frames to only one, at the input stage.
Our trained model overperforms the benchmarks in the medical volume classification of most of the tested datasets from MedMNIST3D.
arXiv Detail & Related papers (2022-11-07T10:25:38Z) - Two-Stream Graph Convolutional Network for Intra-oral Scanner Image
Segmentation [133.02190910009384]
We propose a two-stream graph convolutional network (i.e., TSGCN) to handle inter-view confusion between different raw attributes.
Our TSGCN significantly outperforms state-of-the-art methods in 3D tooth (surface) segmentation.
arXiv Detail & Related papers (2022-04-19T10:41:09Z) - Exploiting Redundancy: Separable Group Convolutional Networks on Lie
Groups [14.029933823101084]
Group convolutional neural networks (G-CNNs) have been shown to increase parameter efficiency and model accuracy.
In this work, we investigate the properties of representations learned by regular G-CNNs, and show considerable parameter redundancy in group convolution kernels.
We introduce convolution kernels that are separable over the subgroup and channel dimensions.
arXiv Detail & Related papers (2021-10-25T15:56:53Z) - Decentralized Local Stochastic Extra-Gradient for Variational
Inequalities [125.62877849447729]
We consider distributed variational inequalities (VIs) on domains with the problem data that is heterogeneous (non-IID) and distributed across many devices.
We make a very general assumption on the computational network that covers the settings of fully decentralized calculations.
We theoretically analyze its convergence rate in the strongly-monotone, monotone, and non-monotone settings.
arXiv Detail & Related papers (2021-06-15T17:45:51Z) - ACDC: Weight Sharing in Atom-Coefficient Decomposed Convolution [57.635467829558664]
We introduce a structural regularization across convolutional kernels in a CNN.
We show that CNNs now maintain performance with dramatic reduction in parameters and computations.
arXiv Detail & Related papers (2020-09-04T20:41:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.