Locally Differentially Private Distributed Online Learning with Guaranteed Optimality
- URL: http://arxiv.org/abs/2306.14094v3
- Date: Fri, 23 Aug 2024 23:38:50 GMT
- Title: Locally Differentially Private Distributed Online Learning with Guaranteed Optimality
- Authors: Ziqin Chen, Yongqiang Wang,
- Abstract summary: This paper proposes an approach that ensures both differential privacy and learning accuracy in distributed online learning.
While ensuring a diminishing expected instantaneous regret, the approach can simultaneously ensure a finite cumulative privacy budget.
To the best of our knowledge, this is the first algorithm that successfully ensures both rigorous local differential privacy and learning accuracy.
- Score: 1.800614371653704
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Distributed online learning is gaining increased traction due to its unique ability to process large-scale datasets and streaming data. To address the growing public awareness and concern on privacy protection, plenty of algorithms have been proposed to enable differential privacy in distributed online optimization and learning. However, these algorithms often face the dilemma of trading learning accuracy for privacy. By exploiting the unique characteristics of online learning, this paper proposes an approach that tackles the dilemma and ensures both differential privacy and learning accuracy in distributed online learning. More specifically, while ensuring a diminishing expected instantaneous regret, the approach can simultaneously ensure a finite cumulative privacy budget, even in the infinite time horizon. To cater for the fully distributed setting, we adopt the local differential-privacy framework, which avoids the reliance on a trusted data curator that is required in the classic "centralized" (global) differential-privacy framework. To the best of our knowledge, this is the first algorithm that successfully ensures both rigorous local differential privacy and learning accuracy. The effectiveness of the proposed algorithm is evaluated using machine learning tasks, including logistic regression on the the "mushrooms" datasets and CNN-based image classification on the "MNIST" and "CIFAR-10" datasets.
Related papers
- Masked Differential Privacy [64.32494202656801]
We propose an effective approach called masked differential privacy (DP), which allows for controlling sensitive regions where differential privacy is applied.
Our method operates selectively on data and allows for defining non-sensitive-temporal regions without DP application or combining differential privacy with other privacy techniques within data samples.
arXiv Detail & Related papers (2024-10-22T15:22:53Z) - Locally Differentially Private Gradient Tracking for Distributed Online
Learning over Directed Graphs [2.1271873498506038]
We propose a locally differentially private gradient tracking based distributed online learning algorithm.
We prove that the proposed algorithm converges in mean square to the exact optimal solution while ensuring rigorous local differential privacy.
arXiv Detail & Related papers (2023-10-24T18:15:25Z) - Shuffled Differentially Private Federated Learning for Time Series Data
Analytics [10.198481976376717]
We develop a privacy-preserving federated learning algorithm for time series data.
Specifically, we employ local differential privacy to extend the privacy protection trust boundary to the clients.
We also incorporate shuffle techniques to achieve a privacy amplification, mitigating the accuracy decline caused by leveraging local differential privacy.
arXiv Detail & Related papers (2023-07-30T10:30:38Z) - Differentially Private Stochastic Gradient Descent with Low-Noise [49.981789906200035]
Modern machine learning algorithms aim to extract fine-grained information from data to provide accurate predictions, which often conflicts with the goal of privacy protection.
This paper addresses the practical and theoretical importance of developing privacy-preserving machine learning algorithms that ensure good performance while preserving privacy.
arXiv Detail & Related papers (2022-09-09T08:54:13Z) - Decentralized Stochastic Optimization with Inherent Privacy Protection [103.62463469366557]
Decentralized optimization is the basic building block of modern collaborative machine learning, distributed estimation and control, and large-scale sensing.
Since involved data, privacy protection has become an increasingly pressing need in the implementation of decentralized optimization algorithms.
arXiv Detail & Related papers (2022-05-08T14:38:23Z) - Personalization Improves Privacy-Accuracy Tradeoffs in Federated
Optimization [57.98426940386627]
We show that coordinating local learning with private centralized learning yields a generically useful and improved tradeoff between accuracy and privacy.
We illustrate our theoretical results with experiments on synthetic and real-world datasets.
arXiv Detail & Related papers (2022-02-10T20:44:44Z) - Graph-Homomorphic Perturbations for Private Decentralized Learning [64.26238893241322]
Local exchange of estimates allows inference of data based on private data.
perturbations chosen independently at every agent, resulting in a significant performance loss.
We propose an alternative scheme, which constructs perturbations according to a particular nullspace condition, allowing them to be invisible.
arXiv Detail & Related papers (2020-10-23T10:35:35Z) - LDP-FL: Practical Private Aggregation in Federated Learning with Local
Differential Privacy [20.95527613004989]
Federated learning is a popular approach for privacy protection that collects the local gradient information instead of real data.
Previous works do not give a practical solution due to three issues.
Last, the privacy budget explodes due to the high dimensionality of weights in deep learning models.
arXiv Detail & Related papers (2020-07-31T01:08:57Z) - Differentially private cross-silo federated learning [16.38610531397378]
Strict privacy is of paramount importance in distributed machine learning.
In this paper we combine additively homomorphic secure summation protocols with differential privacy in the so-called cross-silo federated learning setting.
We demonstrate that our proposed solutions give prediction accuracy that is comparable to the non-distributed setting.
arXiv Detail & Related papers (2020-07-10T18:15:10Z) - SPEED: Secure, PrivatE, and Efficient Deep learning [2.283665431721732]
We introduce a deep learning framework able to deal with strong privacy constraints.
Based on collaborative learning, differential privacy and homomorphic encryption, the proposed approach advances state-of-the-art.
arXiv Detail & Related papers (2020-06-16T19:31:52Z) - Privacy-preserving Traffic Flow Prediction: A Federated Learning
Approach [61.64006416975458]
We propose a privacy-preserving machine learning technique named Federated Learning-based Gated Recurrent Unit neural network algorithm (FedGRU) for traffic flow prediction.
FedGRU differs from current centralized learning methods and updates universal learning models through a secure parameter aggregation mechanism.
It is shown that FedGRU's prediction accuracy is 90.96% higher than the advanced deep learning models.
arXiv Detail & Related papers (2020-03-19T13:07:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.