ProtoDiff: Learning to Learn Prototypical Networks by Task-Guided
Diffusion
- URL: http://arxiv.org/abs/2306.14770v2
- Date: Mon, 6 Nov 2023 21:59:07 GMT
- Title: ProtoDiff: Learning to Learn Prototypical Networks by Task-Guided
Diffusion
- Authors: Yingjun Du, Zehao Xiao, Shengcai Liao, Cees Snoek
- Abstract summary: Prototype-based meta-learning has emerged as a powerful technique for addressing few-shot learning challenges.
We introduce ProtoDiff, a framework that gradually generates task-specific prototypes from random noise.
We conduct thorough ablation studies to demonstrate its ability to accurately capture the underlying prototype distribution.
- Score: 44.805452233966534
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Prototype-based meta-learning has emerged as a powerful technique for
addressing few-shot learning challenges. However, estimating a deterministic
prototype using a simple average function from a limited number of examples
remains a fragile process. To overcome this limitation, we introduce ProtoDiff,
a novel framework that leverages a task-guided diffusion model during the
meta-training phase to gradually generate prototypes, thereby providing
efficient class representations. Specifically, a set of prototypes is optimized
to achieve per-task prototype overfitting, enabling accurately obtaining the
overfitted prototypes for individual tasks. Furthermore, we introduce a
task-guided diffusion process within the prototype space, enabling the
meta-learning of a generative process that transitions from a vanilla prototype
to an overfitted prototype. ProtoDiff gradually generates task-specific
prototypes from random noise during the meta-test stage, conditioned on the
limited samples available for the new task. Furthermore, to expedite training
and enhance ProtoDiff's performance, we propose the utilization of residual
prototype learning, which leverages the sparsity of the residual prototype. We
conduct thorough ablation studies to demonstrate its ability to accurately
capture the underlying prototype distribution and enhance generalization. The
new state-of-the-art performance on within-domain, cross-domain, and few-task
few-shot classification further substantiates the benefit of ProtoDiff.
Related papers
- Task Consistent Prototype Learning for Incremental Few-shot Semantic Segmentation [20.49085411104439]
Incremental Few-Shot Semantic (iFSS) tackles a task that requires a model to continually expand its segmentation capability on novel classes.
This study introduces a meta-learning-based prototype approach that encourages the model to learn how to adapt quickly while preserving previous knowledge.
Experiments on iFSS datasets built upon PASCAL and COCO benchmarks show the advanced performance of the proposed approach.
arXiv Detail & Related papers (2024-10-16T23:42:27Z) - Mixture of Gaussian-distributed Prototypes with Generative Modelling for Interpretable and Trustworthy Image Recognition [15.685927265270085]
We present a new generative paradigm to learn prototype distributions, termed as Mixture of Gaussian-distributed Prototypes (MGProto)
MGProto achieves state-of-the-art image recognition and OoD detection performances, while providing encouraging interpretability results.
arXiv Detail & Related papers (2023-11-30T11:01:37Z) - Learning Transferable Conceptual Prototypes for Interpretable
Unsupervised Domain Adaptation [79.22678026708134]
In this paper, we propose an inherently interpretable method, named Transferable Prototype Learning ( TCPL)
To achieve this goal, we design a hierarchically prototypical module that transfers categorical basic concepts from the source domain to the target domain and learns domain-shared prototypes for explaining the underlying reasoning process.
Comprehensive experiments show that the proposed method can not only provide effective and intuitive explanations but also outperform previous state-of-the-arts.
arXiv Detail & Related papers (2023-10-12T06:36:41Z) - Dual Prototypical Contrastive Learning for Few-shot Semantic
Segmentation [55.339405417090084]
We propose a dual prototypical contrastive learning approach tailored to the few-shot semantic segmentation (FSS) task.
The main idea is to encourage the prototypes more discriminative by increasing inter-class distance while reducing intra-class distance in prototype feature space.
We demonstrate that the proposed dual contrastive learning approach outperforms state-of-the-art FSS methods on PASCAL-5i and COCO-20i datasets.
arXiv Detail & Related papers (2021-11-09T08:14:50Z) - Prototype Completion for Few-Shot Learning [13.63424509914303]
Few-shot learning aims to recognize novel classes with few examples.
Pre-training based methods effectively tackle the problem by pre-training a feature extractor and then fine-tuning it through the nearest centroid based meta-learning.
We propose a novel prototype completion based meta-learning framework.
arXiv Detail & Related papers (2021-08-11T03:44:00Z) - Attentional Prototype Inference for Few-Shot Segmentation [128.45753577331422]
We propose attentional prototype inference (API), a probabilistic latent variable framework for few-shot segmentation.
We define a global latent variable to represent the prototype of each object category, which we model as a probabilistic distribution.
We conduct extensive experiments on four benchmarks, where our proposal obtains at least competitive and often better performance than state-of-the-art prototype-based methods.
arXiv Detail & Related papers (2021-05-14T06:58:44Z) - Prototype Completion with Primitive Knowledge for Few-Shot Learning [20.449056536438658]
Few-shot learning is a challenging task, which aims to learn a classifier for novel classes with few examples.
Pre-training based meta-learning methods effectively tackle the problem by pre-training a feature extractor and then fine-tuning it through the nearest centroid based meta-learning.
We propose a novel prototype completion based meta-learning framework.
arXiv Detail & Related papers (2020-09-10T16:09:34Z) - Learning Sparse Prototypes for Text Generation [120.38555855991562]
Prototype-driven text generation is inefficient at test time as a result of needing to store and index the entire training corpus.
We propose a novel generative model that automatically learns a sparse prototype support set that achieves strong language modeling performance.
In experiments, our model outperforms previous prototype-driven language models while achieving up to a 1000x memory reduction.
arXiv Detail & Related papers (2020-06-29T19:41:26Z) - Prototypical Contrastive Learning of Unsupervised Representations [171.3046900127166]
Prototypical Contrastive Learning (PCL) is an unsupervised representation learning method.
PCL implicitly encodes semantic structures of the data into the learned embedding space.
PCL outperforms state-of-the-art instance-wise contrastive learning methods on multiple benchmarks.
arXiv Detail & Related papers (2020-05-11T09:53:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.