LongCoder: A Long-Range Pre-trained Language Model for Code Completion
- URL: http://arxiv.org/abs/2306.14893v1
- Date: Mon, 26 Jun 2023 17:59:24 GMT
- Title: LongCoder: A Long-Range Pre-trained Language Model for Code Completion
- Authors: Daya Guo and Canwen Xu and Nan Duan and Jian Yin and Julian McAuley
- Abstract summary: LongCoder employs a sliding window mechanism for self-attention and introduces two types of globally accessible tokens.
Bridge tokens are inserted throughout the input sequence to aggregate local information and facilitate global interaction.
memory tokens are included to highlight important statements that may be invoked later and need to be memorized.
- Score: 56.813974784131624
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we introduce a new task for code completion that focuses on
handling long code input and propose a sparse Transformer model, called
LongCoder, to address this task. LongCoder employs a sliding window mechanism
for self-attention and introduces two types of globally accessible tokens -
bridge tokens and memory tokens - to improve performance and efficiency. Bridge
tokens are inserted throughout the input sequence to aggregate local
information and facilitate global interaction, while memory tokens are included
to highlight important statements that may be invoked later and need to be
memorized, such as package imports and definitions of classes, functions, or
structures. We conduct experiments on a newly constructed dataset that contains
longer code context and the publicly available CodeXGLUE benchmark.
Experimental results demonstrate that LongCoder achieves superior performance
on code completion tasks compared to previous models while maintaining
comparable efficiency in terms of computational resources during inference. All
the codes and data are available at https://github.com/microsoft/CodeBERT.
Related papers
- SparseCoder: Identifier-Aware Sparse Transformer for File-Level Code
Summarization [51.67317895094664]
This paper studies file-level code summarization, which can assist programmers in understanding and maintaining large source code projects.
We propose SparseCoder, an identifier-aware sparse transformer for effectively handling long code sequences.
arXiv Detail & Related papers (2024-01-26T09:23:27Z) - InterCode: Standardizing and Benchmarking Interactive Coding with
Execution Feedback [50.725076393314964]
We introduce InterCode, a lightweight, flexible, and easy-to-use framework of interactive coding as a standard reinforcement learning environment.
Our framework is language and platform agnostic, uses self-contained Docker environments to provide safe and reproducible execution.
We demonstrate InterCode's viability as a testbed by evaluating multiple state-of-the-art LLMs configured with different prompting strategies.
arXiv Detail & Related papers (2023-06-26T17:59:50Z) - RepoCoder: Repository-Level Code Completion Through Iterative Retrieval
and Generation [96.75695811963242]
RepoCoder is a framework to streamline the repository-level code completion process.
It incorporates a similarity-based retriever and a pre-trained code language model.
It consistently outperforms the vanilla retrieval-augmented code completion approach.
arXiv Detail & Related papers (2023-03-22T13:54:46Z) - ReACC: A Retrieval-Augmented Code Completion Framework [53.49707123661763]
We propose a retrieval-augmented code completion framework, leveraging both lexical copying and referring to code with similar semantics by retrieval.
We evaluate our approach in the code completion task in Python and Java programming languages, achieving a state-of-the-art performance on CodeXGLUE benchmark.
arXiv Detail & Related papers (2022-03-15T08:25:08Z) - CLSEBERT: Contrastive Learning for Syntax Enhanced Code Pre-Trained
Model [23.947178895479464]
We propose CLSEBERT, a Constrastive Learning Framework for Syntax Enhanced Code Pre-Trained Model.
In the pre-training stage, we consider the code syntax and hierarchy contained in the Abstract Syntax Tree (AST)
We also introduce two novel pre-training objectives. One is to predict the edges between nodes in the abstract syntax tree, and the other is to predict the types of code tokens.
arXiv Detail & Related papers (2021-08-10T10:08:21Z) - InferCode: Self-Supervised Learning of Code Representations by
Predicting Subtrees [17.461451218469062]
This paper proposes InferCode to overcome the limitation by adapting the self-language learning mechanism to build source code model.
Subtrees in ASTs are treated with InferCode as the labels for training code representations without any human labeling effort or the overhead of expensive graph construction.
Compared to previous code learning techniques applied to the same downstream tasks, such as Code2Vec, Code2Seq, ASTNN, higher performance results are achieved using our pre-trained InferCode model.
arXiv Detail & Related papers (2020-12-13T10:33:41Z) - GraphCodeBERT: Pre-training Code Representations with Data Flow [97.00641522327699]
We present GraphCodeBERT, a pre-trained model for programming language that considers the inherent structure of code.
We use data flow in the pre-training stage, which is a semantic-level structure of code that encodes the relation of "where-the-value-comes-from" between variables.
We evaluate our model on four tasks, including code search, clone detection, code translation, and code refinement.
arXiv Detail & Related papers (2020-09-17T15:25:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.