Transfer: Cross Modality Knowledge Transfer using Adversarial Networks
-- A Study on Gesture Recognition
- URL: http://arxiv.org/abs/2306.15114v1
- Date: Mon, 26 Jun 2023 23:47:59 GMT
- Title: Transfer: Cross Modality Knowledge Transfer using Adversarial Networks
-- A Study on Gesture Recognition
- Authors: Payal Kamboj, Ayan Banerjee and Sandeep K.S. Gupta
- Abstract summary: We propose a generic framework for knowledge transfer between a source and a target technology.
TRANSFER uses a language-based representation of a hand gesture, which captures a temporal combination of concepts.
We demonstrate the usage of TRANSFER for three different scenarios.
- Score: 7.742297876120562
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Knowledge transfer across sensing technology is a novel concept that has been
recently explored in many application domains, including gesture-based human
computer interaction. The main aim is to gather semantic or data driven
information from a source technology to classify / recognize instances of
unseen classes in the target technology. The primary challenge is the
significant difference in dimensionality and distribution of feature sets
between the source and the target technologies. In this paper, we propose
TRANSFER, a generic framework for knowledge transfer between a source and a
target technology. TRANSFER uses a language-based representation of a hand
gesture, which captures a temporal combination of concepts such as handshape,
location, and movement that are semantically related to the meaning of a word.
By utilizing a pre-specified syntactic structure and tokenizer, TRANSFER
segments a hand gesture into tokens and identifies individual components using
a token recognizer. The tokenizer in this language-based recognition system
abstracts the low-level technology-specific characteristics to the machine
interface, enabling the design of a discriminator that learns
technology-invariant features essential for recognition of gestures in both
source and target technologies. We demonstrate the usage of TRANSFER for three
different scenarios: a) transferring knowledge across technology by learning
gesture models from video and recognizing gestures using WiFi, b) transferring
knowledge from video to accelerometer, and d) transferring knowledge from
accelerometer to WiFi signals.
Related papers
- Trustworthy Image Semantic Communication with GenAI: Explainablity, Controllability, and Efficiency [59.15544887307901]
Image semantic communication (ISC) has garnered significant attention for its potential to achieve high efficiency in visual content transmission.
Existing ISC systems based on joint source-channel coding face challenges in interpretability, operability, and compatibility.
We propose a novel trustworthy ISC framework that employs Generative Artificial Intelligence (GenAI) for multiple downstream inference tasks.
arXiv Detail & Related papers (2024-08-07T14:32:36Z) - Interpreting Hand gestures using Object Detection and Digits Classification [0.0]
This research aims to develop a robust system that can accurately recognize and classify hand gestures representing numbers.
The proposed approach involves collecting a dataset of hand gesture images, preprocessing and enhancing the images, extracting relevant features, and training a machine learning model.
arXiv Detail & Related papers (2024-07-15T16:53:04Z) - Unimodal and Multimodal Sensor Fusion for Wearable Activity Recognition [0.0]
Human activity recognition (HAR) benefits from combining redundant and complementary information.
This Ph.D. work employs sensing modalities such as inertial, pressure (audio and atmospheric pressure), and textile capacitive sensing for HAR.
The selected wearable devices and sensing modalities are fully integrated with machine learning-based algorithms.
arXiv Detail & Related papers (2024-04-24T17:35:29Z) - TENT: Connect Language Models with IoT Sensors for Zero-Shot Activity
Recognition [35.816500811872196]
This paper explores the feasibility of building an intelligent Human Activity Recognition (HAR) system with human-like cognition.
We propose an innovative approach, IoT-sEnsors-language alignmEnt pre-Training (TENT), which aligns textual embeddings with IoT sensor signals.
We show TENT achieves state-of-the-art performance on zero-shot HAR tasks using different modalities, improving the best vision-language models by over 12%.
arXiv Detail & Related papers (2023-11-14T15:30:17Z) - FedOpenHAR: Federated Multi-Task Transfer Learning for Sensor-Based
Human Activity Recognition [0.0]
This paper explores Federated Transfer Learning in a Multi-Task manner for both sensor-based human activity recognition and device position identification tasks.
The OpenHAR framework is used to train the models, which contains ten smaller datasets.
By utilizing transfer learning and training a task-specific and personalized federated model, we obtained a similar accuracy with training each client individually and higher accuracy than a fully centralized approach.
arXiv Detail & Related papers (2023-11-13T21:31:07Z) - Agile gesture recognition for capacitive sensing devices: adapting
on-the-job [55.40855017016652]
We demonstrate a hand gesture recognition system that uses signals from capacitive sensors embedded into the etee hand controller.
The controller generates real-time signals from each of the wearer five fingers.
We use a machine learning technique to analyse the time series signals and identify three features that can represent 5 fingers within 500 ms.
arXiv Detail & Related papers (2023-05-12T17:24:02Z) - Multimodal Emotion Recognition using Transfer Learning from Speaker
Recognition and BERT-based models [53.31917090073727]
We propose a neural network-based emotion recognition framework that uses a late fusion of transfer-learned and fine-tuned models from speech and text modalities.
We evaluate the effectiveness of our proposed multimodal approach on the interactive emotional dyadic motion capture dataset.
arXiv Detail & Related papers (2022-02-16T00:23:42Z) - Federated Learning: A Signal Processing Perspective [144.63726413692876]
Federated learning is an emerging machine learning paradigm for training models across multiple edge devices holding local datasets, without explicitly exchanging the data.
This article provides a unified systematic framework for federated learning in a manner that encapsulates and highlights the main challenges that are natural to treat using signal processing tools.
arXiv Detail & Related papers (2021-03-31T15:14:39Z) - Knowledge Distillation By Sparse Representation Matching [107.87219371697063]
We propose Sparse Representation Matching (SRM) to transfer intermediate knowledge from one Convolutional Network (CNN) to another by utilizing sparse representation.
We formulate as a neural processing block, which can be efficiently optimized using gradient descent and integrated into any CNN in a plug-and-play manner.
Our experiments demonstrate that is robust to architectural differences between the teacher and student networks, and outperforms other KD techniques across several datasets.
arXiv Detail & Related papers (2021-03-31T11:47:47Z) - Semantics-aware Adaptive Knowledge Distillation for Sensor-to-Vision
Action Recognition [131.6328804788164]
We propose a framework, named Semantics-aware Adaptive Knowledge Distillation Networks (SAKDN), to enhance action recognition in vision-sensor modality (videos)
The SAKDN uses multiple wearable-sensors as teacher modalities and uses RGB videos as student modality.
arXiv Detail & Related papers (2020-09-01T03:38:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.